Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Hamase, Erina; Ohgama, Kazuya; Kawamura, Takumi*; Doda, Norihiro; Tanaka, Masaaki; Yamano, Hidemasa
Annals of Nuclear Energy, 195, p.110157_1 - 110157_14, 2024/01
To validate the fast reactor plant dynamics analysis code Super-COPD for the loss of flow without scram (LOFWOS) event, we participated in the IAEA benchmark for the LOFWOS test No.13 performed at the FFTF as one of the passive safety demonstration test. In the blind phase, there were challenges to reproduce outlet temperatures of fuel assemblies and the total reactivity. To improve the evaluation accuracy of them, the whole core model considering the radial heat transfer and interwrapper flow and the simplified assembly bowing reactivity model were introduced. As a result of the final phase, the second peak of outlet temperatures was reproduced successfully, and the total reactivity could generally follow the measured data. Super-COPD was validated for the LOFWOS event.
Mori, Tetsuya; Ohgama, Kazuya; Hazama, Taira
Nuclear Technology, 209(7), p.1008 - 1023, 2023/07
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)In this study, the sodium radioactivity of Na and
Na in the primary system measured in the prototype fast breeder reactor Monju was evaluated, and the reliability of measurements and calculations was examined. The calculated-to-experiment (C/E) values and their uncertainties for
Na and
Na radioactivities were 0.97-1.07 and 8.1%-11.0% and 1.03-1.16 and 23.3%-24.1%, respectively, using JENDL-4.0 nuclear data library. The
Na radioactivity calculated with ENDF/B-VIII.0 was larger by 40% than those calculated with JENDL-4.0 and JEFF-3.3 due to the
Na(n,2n) cross-section discrepancy. The importance of the
Na neutron capture effect was also confirmed herein for the accurate evaluation of the
Na radioactivity. The experimental data was judged to be useful for validating the calculation method for improving the reliability of the future designs of sodium-cooled fast reactors.
Doda, Norihiro; Uwaba, Tomoyuki; Ohgama, Kazuya; Yoshimura, Kazuo; Nemoto, Toshiyuki*; Tanaka, Masaaki; Yamano, Hidemasa
Nihon Kikai Gakkai Kanto Shibu Dai-29-Ki Sokai, Koenkai Koen Rombunshu (Internet), 5 Pages, 2023/03
An evaluation method for reactivity feedback due to core deformation during reactor power increase in sodium-cooled fast reactors is being developed for realistic core design evaluation. In this evaluation method, fuel assembly bowing was modeled with a beam element of the finite element method, and the assembly's pad contact between adjacent assemblies was modeled with a dedicated element which could consider the wrapper tube cross-sectional distortion and the pad stiffness depending on pad contact conditions. This fuel assembly bowing analysis model was verified for thermal bowing of a single assembly and assembly pad contact between adjacent assemblies in a core as past benchmark problems. The calculation results by this model showed good agreement with those of reference solutions of theoretical solutions or results by participating institutions in the benchmark. This study confirmed that the analysis model was able to calculate thermal assembly bowing appropriately.
Ohgama, Kazuya; Takegoshi, Atsushi*; Katagiri, Hiroki; Hazama, Taira
Nuclear Technology, 208(10), p.1619 - 1633, 2022/10
Times Cited Count:3 Percentile:77.29(Nuclear Science & Technology)Hamase, Erina; Ohgama, Kazuya; Kawamura, Takumi*; Doda, Norihiro; Yamano, Hidemasa; Tanaka, Masaaki
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 9 Pages, 2022/10
To improve the prediction accuracy of the plant dynamics analysis code named Super-COPD, JAEA has joined the IAEA benchmark for the FFTF Loss of Flow Without Scram Test No.13. In the first blind phase, there was the challenge to perform outlet temperatures of fuel assemblies more accurately. Hence, the renewed analysis was performed with the whole core multi-channel model in which each assembly was modelled to simulate the radial heat transfer among assemblies and the flow redistribution induced by the buoyancy in the NC conditions. Then, to validate the coupled transient analysis between the whole core multi-channel model and the one-point kinetics model, the analysis considering major reactivity feedbacks such as GEM, assembly bowing was performed. As a result, the second peak of outlet temperatures was reproduced successfully, and it was observed that the plant dynamics analysis could follow the measured data.
Ohgama, Kazuya; Hara, Toshiharu*; Ota, Hirokazu*; Naganuma, Masayuki; Oki, Shigeo; Iizuka, Masatoshi*
Journal of Nuclear Science and Technology, 59(6), p.735 - 747, 2022/06
Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)Ohgama, Kazuya; Katagiri, Hiroki; Takegoshi, Atsushi*; Hazama, Taira
Nuclear Technology, 207(12), p.1810 - 1820, 2021/12
Times Cited Count:3 Percentile:51.72(Nuclear Science & Technology)Ota, Hirokazu*; Ohgama, Kazuya; Yamano, Hidemasa
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.30 - 39, 2019/09
Ohgama, Kazuya; Takegoshi, Atsushi; Katagiri, Hiroki*; Hazama, Taira
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 8 Pages, 2019/05
Ohgama, Kazuya; Ota, Hirokazu*; Oki, Shigeo; Iizuka, Masatoshi*
Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05
Ohgama, Kazuya; Oki, Shigeo; Kitada, Takanori*; Takeda, Toshikazu*
Proceedings of 21st Pacific Basin Nuclear Conference (PBNC 2018) (USB Flash Drive), p.942 - 947, 2018/09
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Mechanical Engineering Journal (Internet), 4(3), p.16-00592_1 - 16-00592_9, 2017/06
Ohgama, Kazuya; Ikeda, Kazumi*; Ishikawa, Makoto; Kan, Taro*; Maruyama, Shuhei; Yokoyama, Kenji; Sugino, Kazuteru; Nagaya, Yasunobu; Oki, Shigeo
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 8 Pages, 2017/04
Stauff, N. E.*; Ohgama, Kazuya; Aliberti, G.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04
Ohgama, Kazuya; Ota, Hirokazu*; Ikusawa, Yoshihisa; Oki, Shigeo; Ogata, Takanari*
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04
Kan, Taro*; Ogura, Masashi*; Hibi, Koki*; Oki, Shigeo; Maeda, Seiichiro; Maruyama, Shuhei; Ohgama, Kazuya
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04
Ohgama, Kazuya; Nakano, Yoshihiro; Oki, Shigeo
Journal of Nuclear Science and Technology, 53(8), p.1155 - 1163, 2016/08
Times Cited Count:1 Percentile:10.92(Nuclear Science & Technology)The power distribution and core characteristics in various configurations of fuel subassemblies with an innerduct structure in the Japan Sodium-cooled Fast Reactor were evaluated using a Monte Carlo code for neutron transport and burnup calculation. The correlation between the fraction of fuel subassemblies facing outward and the degree of power increase at the core center was observed regardless of the compositions. This indicated that the spatial fissile distribution caused by innerduct configurations was the major factor of the difference in the power distribution. A power increase was also found in an off-center region, and it tended to be greater than that at the core center because of the steep gradient of neutron flux intensity. The differences in the worth of control rods caused by innerduct configurations were confirmed.
Ohgama, Kazuya; Aliberti, G.*; Stauff, N. E.*; Oki, Shigeo; Kim, T. K.*
Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 6 Pages, 2016/06
Under the cooperative effort of the Civil Nuclear Energy R&D Working Group within the framework of the U.S.-Japan bilateral, Argonne National Laboratory (ANL) and Japan Atomic Energy Agency (JAEA) have been performing benchmark study using Japan Sodium-cooled Fast Reactor (JSFR) design with metal fuel. In this benchmark study, core characteristic parameters at the beginning of cycle were evaluated by the best estimate deterministic and stochastic methodologies of ANL and JAEA. The results obtained by both institutions are agreed well with less than 200 pcm of discrepancy on the neutron multiplication factor, and less than 3% of discrepancy on the sodium void reactivity, Doppler reactivity, and control rod worth. The results by the stochastic and deterministic were compared in each party to investigate impacts of the deterministic approximation and to understand potential variations in the results due to different calculation methodologies employed. Impacts of the nuclear data libraries were also investigated using a sensitivity analysis methodology.
Katakura, Junichi*; Minato, Futoshi; Ohgama, Kazuya
EPJ Web of Conferences, 111, p.08004_1 - 08004_5, 2016/03
Times Cited Count:17 Percentile:99.6The JENDL FP Fission Yield Data Library (JENDL/FPY-2011) was released in 2011. Although the data of the yield file are successfully applied to decay heat summation calculations, there have been reported some inadequacies when applied to delayed neutron related subjects. And also from sensitivity analyses of summation calculation, some fission yield data in the JENDL file have been claimed to have some problems. In order to remedy those problems some yield data of the JENDL file have been re-examined and revised. The following is one example. The yield data of Ge for thermal neutron fission of
U is given to be 6.277
in JENDL/FPY-2011 which has been claimed to be too large. The re-examination and re-calculation of the fission yield data now give the new value of 3.437
which seems to be more reasonable. There are some other nuclides indicated by the sensitivity analyses. The process of the re-examination of those nuclides and the revised yield data will be presented in the workshop WONDER 2015.