Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Development of fabrication and inspection technologies for oxidation-resistant fuel element for high-temperature gas-cooled reactors

Aihara, Jun; Yasuda, Atsushi*; Ueta, Shohei; Ogawa, Hiroaki; Honda, Masaki*; Ohira, Koichi*; Tachibana, Yukio

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(4), p.237 - 245, 2019/12

Development of fabrication and inspection technologies of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors (HTGRs) in severe oxidation accident was carried out. Simulated coated fuel particles (CFPs), alumina particles, were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter simulated oxidation resistant fuel elements with SiC/C mixed matrix. Simulated oxidation resistant fuel elements with matrix whose Si/C mole ratio is 1.00 were fabricated. Failure fraction of CFPs in fuel elements is one of very important inspection subjects of HTGR fuel. It is essential that CFPs are extracted from fuel elements without additional failure. Development of method for extraction of CFPs was carried out. Desolation of SiC by KOH method or pressurized acidolysis method should be applied to extraction of CFPs.

Journal Articles

Development of fabrication technology for oxidation-resistant fuel elements for high-temperature gas-cooled reactors

Aihara, Jun; Honda, Masaki*; Ueta, Shohei; Ogawa, Hiroaki; Ohira, Koichi*; Tachibana, Yukio

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(1), p.29 - 36, 2019/03

Japan Atomic Energy Agency carried out development of fabrication technology of oxidation resistant fuel element for improvement of safety of high temperature gas-cooled reactors in serious oxidation accident, based on precursor research in former JAEA. Dummy coated fuel particles (alumina particles) were over-coated with mixed powder of Si, C and small amount of resin to form over-coated particles, and over-coated particles were molded and hot-pressed to sinter dummy oxidation resistant fuel elements with SiC/C mixed matrix. We fabricated dummy oxidation resistant fuel elements with matrix whose Si/C mole ratio (about 0.551) is three times as large as that in precursor research. Si peak was not detected by X-ray diffraction of matrix. Better oxidation resistant was confirmed with oxidation test in 20% O$$_{2}$$ at 1673 K than that of ordinal fuel compact with ordinal graphite/carbon matrix. All dummy coated fuel particles were held in specimen after 10 h oxidation.

Journal Articles

Status of development of Lithium Target Facility in IFMIF/EVEDA project

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Hoashi, Eiji*; Fukada, Satoshi*; Suzuki, Akihiro*; Yagi, Juro*; Tsuji, Yoshiyuki*; et al.

Proceedings of Plasma Conference 2014 (PLASMA 2014) (CD-ROM), 2 Pages, 2014/11

In the IFMIF/EVEDA (International Fusion Materials Irradiation Facility/ Engineering Validation and Engineering Design Activity), the validation tests of the EVEDA lithium test loop with the world's highest flow rate of 3000 L/min was succeeded in generating a 100 mm-wide and 25 mm-thick free-surface lithium flow steadily under the IFMIF operation condition of a high-speed of 15 m/s at 250$$^{circ}$$C in a vacuum of 10 $$^{-3}$$ Pa. Some excellent results of the recent engineering validations including lithium purification, lithium safety, and remote handling technique were obtained, and the engineering design of lithium facility was also evaluated. These results will advance greatly the development of an accelerator-based neutron source to simulate the fusion reactor materials irradiation environment as an important key technology for the development of fusion reactor materials.

Journal Articles

Fusion reactor technology; Challenge to future energy

Seki, Masahiro; Hishinuma, Akimichi; Kurihara, Kenichi; Akiba, Masato; Abe, Tetsuya; Ishitsuka, Etsuo; Imai, Tsuyoshi; Enoeda, Mikio; Ohira, Shigeru; Okumura, Yoshikazu; et al.

Kaku Yugoro Kogaku Gairon; Mirai Enerugi Eno Chosen, 246 Pages, 2001/09

no abstracts in English

Journal Articles

Decontamination of candidate materials for ITER remote handling equipment exposed to tritiated moisture

Oya, Yasuhisa; Kobayashi, Kazuhiro; Shu, Wataru; Hayashi, Takumi; Ohira, Shigeru; Nakamura, Hirofumi; Iwai, Yasunori; Nishi, Masataka; Higashijima, Takeshi*; Obara, Kenjiro; et al.

Fusion Technology, 39(2-Part2), p.1023 - 1027, 2001/03

no abstracts in English

Oral presentation

Non-destructive oxide thickness measurement for BWR fuel rod "Development of crud removal technique"

Sato, Atsushi; Shiina, Hidenori; Kataoka, Kentaro*; Otomo, Susumu*; Kakiuchi, Kazuo*; Ohira, Koichi*; Itagaki, Noboru*; Kaminaga, Norihisa; Kimura, Yasuhiko; Suzuki, Kazuhiro; et al.

no journal, , 

Oral presentation

Status of lithium target facility development in IFMIF/EVEDA project

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Nakaniwa, Koichi; Ito, Yuzuru; Tanaka, Hiroshi; Tsuji, Yoshiyuki*; Ito, Takahiro*; et al.

no journal, , 

no abstracts in English

Oral presentation

Activities summary on lithium target system and test facilities in IFMIF/EVEDA project, 1; Overview of the research and development for lithium target system and the related facilities in IFMIF/EVEDA project

Wakai, Eiichi; Kanemura, Takuji; Furukawa, Tomohiro; Hirakawa, Yasushi; Kondo, Hiroo; Nakaniwa, Koichi; Tanaka, Hiroshi; Sugimoto, Masayoshi; Ohira, Shigeru; Yokomine, Takehiko*

no journal, , 

no abstracts in English

Oral presentation

R&D of lithium target and test facilities for the fusion neutron source

Wakai, Eiichi; Kondo, Hiroo; Kanemura, Takuji; Hirakawa, Yasushi; Furukawa, Tomohiro; Kikuchi, Takayuki; Ito, Yuzuru*; Hoashi, Eiji*; Yoshihashi, Sachiko*; Horiike, Hiroshi*; et al.

no journal, , 

no abstracts in English

Oral presentation

Research on advanced fuel element for upgrading safety of high temperature gas-cooled reactors, 1; Outlines

Tachibana, Yukio; Ohira, Koichi*; Kuroda, Masatoshi*

no journal, , 

For the purpose of upgrading safety of High Temperature Gas-cooled Reactor (HTGR), research on advanced fuel element was conducted with cooperation of Nuclear Fuel Industries and Kumamoto University. The advanced fuel element contains SiC as the matrix material and oxidation resistance is highly improved so that shape and integrity of the fuel element should be maintained even when large unexpected amount of air enters into the core in the air ingress (pipe rupture) accident which is a typical event for the HTGR. This presentation shows outlines of the contracted research from FY2014 to 2016.

Oral presentation

Research on advanced fuel element for upgrading safety of high temperature gas-cooled reactors, 3; Development on inspection of oxidation resistant fuel element

Honda, Masaki*; Yasuda, Atsushi*; Ohira, Koichi*; Tachibana, Yukio

no journal, , 

For the purpose of upgrading safety of High Temperature Gas-cooled Reactor (HTGR), research on inspection technology for advanced fuel element was conducted with cooperation of JAEA from FY2014 to 2016. The advanced fuel element contains SiC as the matrix material and oxidation resistance is highly improved so that shape and integrity of the fuel element should be maintained even when large unexpected amount of air enters into the core in the air ingress (pipe rupture) accident which is a typical event for the HTGR. For the inspection technology, evaluation and inspection methods on homogeneity of SiC/C matrix and distribution of coated fuel particles as well as dissolution methods of coated fuel particles and SiC/C matrix for evaluation of failure fraction were developed and established.

Oral presentation

Development of security and safety fuel for Pu-burner HTGR, 22; Objectives and overview

Okamoto, Koji*; Ohashi, Kazutaka*; Ohira, Koichi*; Kunitomi, Kazuhiko

no journal, , 

A plutonium-burner High Temperature Gas-cooled Reactor (HTGR) can be designed to incinerate plutonium with extremely high safety including the nuclear waste. In order to demonstrate this concept, we evaluated security enhanced fuel for the plutonium-burner HTGR and confirmed its feasibility.

13 (Records 1-13 displayed on this page)
  • 1