Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 577

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of ex-vessel phenomena analysis model for multi-scenario simulation system, spectra

Uchibori, Akihiro; Aoyagi, Mitsuhiro; Takata, Takashi; Ohshima, Hiroyuki

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

The multi-scenario simulation system named SPECTRA has been developed for integrated analysis of in- and ex-vessel phenomena during a severe accident in sodium-cooled fast reactors. The base module computing ex-vessel compressible gas behavior by a lumped mass model and a sodium-concrete interaction module were verified through the basic analyses individually. A validity of the system including the base module and the individual physical module such as the sodium-concrete interaction module was confirmed through the analysis assuming sodium leakage from a reactor vessel and a primary cooling loop.

Journal Articles

Numerical validation of AQUA-SF in SNL T3 sodium spray fire experiment

Sonehara, Masateru; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki; Clark, A. J.*; Louie, D. L. Y.*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 4 Pages, 2020/08

In order to investigate the multi-dimensional effects of sodium combustion, a benchmark analysis of the SNL Surtsey spray combustion experiment (SNL T3 experiments) using AQUA-SF and SPHINCS is conducted in JAEA. As a best estimate analysis, the spray burning duration is adjusted in the computation in order to take into account the temporary suppression of the spray combustion observed in the experiment. Furthermore, droplet size of SPHINCS and AQUA-SF are optimized to represent the T3 experimental results. The best estimate of AQUA-SF results in the droplet diameter of 2.5 mm, which agrees quite well with the spatial temperature measurements, and the sodium droplet diameter measurement with a high speed camera.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Mechanical Engineering Journal (Internet), 7(3), p.19-00489_1 - 19-00489_16, 2020/06

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

Journal Articles

Sodium fire models for in- and ex-vessel safety analysis code SPECTRA

Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki

Transactions of the American Nuclear Society, 122(1), p.862 - 865, 2020/06

Development of a new simulation system SPECTRA has been started to enable a simulation of comprehensive in- and ex-vessel events during a severe accident in a sodium-cooled fast reactor. The simulation system SPECTRA consists of two basic modules of thermal-hydraulics; in-vessel basic module and ex-vessel one, and some sub-modules for specific phenomena or events. A sodium fire models are implemented as one sub-module of the ex-vessel module. The sodium fire models are adapted from existing sodium fire analysis codes AQUA-SF and SPHINCS. As the result of verification test, the results show good agreement with the one of original codes. The validation analysis for single droplet falling and combustion corresponds well with the experimental data reasonably.

Journal Articles

Development of numerical analysis code LEAP-III for tube failure propagation

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki

Nippon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00353_1 - 19-00353_6, 2020/03

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

Journal Articles

Evaluation of important phenomena through the PIRT process for a sodium fire event

Aoyagi, Mitsuhiro; Uchibori, Akihiro; Kikuchi, Shin; Takata, Takashi; Ohno, Shuji; Ohshima, Hiroyuki

Nippon Kikai Gakkai Rombunshu (Internet), 86(883), p.19-00366_1 - 19-00366_8, 2020/03

Sodium fire is one of key issues in sodium-cooled fast reactor plant. JAEA has developed sodium fire analysis codes, such as AQUA-SF and SPHINCS, to evaluate the consequence of sodium fire events. This paper describes the PIRT (Phenomena Identification and Ranking Table) process for sodium fire events. Ranking table for important phenomena and an assessment matrix are completed. As a part of comprehensive validation based on the assessment matrix, experimental analyses using the AQUA-SF and SPHINCS codes for a sodium spray fire experiment Run-E1 show good agreement with the experimental result.

Journal Articles

Outline of the R&D plan for the fast reactor cycle system development in JAEA

Hayafune, Hiroki; Maeda, Seiichiro; Ohshima, Hiroyuki

Nippon Genshiryoku Gakkai-Shi, 61(11), p.798 - 803, 2019/11

In the "Strategic Roadmap" of Fast Reactor Development decided at the Inter-Ministerial Council for Nuclear Power in December 2018, the development works for the around next 10 years were identified, and the role of JAEA was presented. In response, JAEA has prepared a framework for R&D plans for about 5 years on the fast reactor technology and the fuel cycle technology (reprocessing, fuel manufacturing, fuel and material development). In the future, JAEA will promote independent R&D works based on these plans, and provide the obtained R&D results together with various testing functions of JAEA to the activities of the private sector, etc. Through these actions, JAEA will actively contribute to the future fast reactor development. This article outlines JAEA's policy and the R&D items (development of ARKADIA; Advanced Reactor Knowledge- and AI-Aided Design Integration Approach through the whole Plant Life Cycle, development of standards and standards system, development of safety improvement technology, research in the fuel cycle technology), the policy of international cooperation, the human resource development, and the future perspective were explained.

Journal Articles

Identification of important phenomena through the PIRT process for development of sodium fire analysis codes

Aoyagi, Mitsuhiro; Uchibori, Akihiro; Kikuchi, Shin; Takata, Takashi; Ohno, Shuji; Ohshima, Hiroyuki

Nuclear Engineering and Design, 353, p.110240_1 - 110240_10, 2019/11

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

JAEA has developed sodium fire analysis codes to evaluate the consequences of sodium fire events. This paper describes a PIRT (Phenomena Identification and Ranking Table) process for such events. Because a sodium fire event involves complex phenomena, the FOMs are specified through a factor analysis. Associated phenomena in a sodium fire event are identified through both element- and sequence-based phenomena analyses. The importance of each phenomenon is evaluated by considering the sequence-based analysis of associated phenomena related to the FOMs. Then, a ranking table is established. An assessment matrix of important phenomena and experiments is completed to confirm the sufficiency of experimental data for the validation of the models in the sodium fire analysis codes. Additional assessments are discussed specifically for the aerosol module and the CFD module in three-dimensional codes from a perspective of careful validation.

Journal Articles

Experiments on gas entrainment phenomena due to free surface vortex induced by flow passing beside stagnation region

Ezure, Toshiki; Ito, Kei; Tanaka, Masaaki; Ohshima, Hiroyuki; Kameyama, Yuri*

Nuclear Engineering and Design, 350, p.90 - 97, 2019/08

 Times Cited Count:2 Percentile:31.52(Nuclear Science & Technology)

This paper reports the results of an experiment on surface vortex-type gas entrainment, which occurs in a shear flow area where flow passes besides the stagnation region. The relationship between the free surface dimple shape and the velocity distribution around the free surface vortex was simultaneously grasped under several horizontal and suction velocity conditions by a combination of visualization and particle image velocimetry measurements. The circulation and the vertical velocity gradient were also evaluated from the velocity distributions at a plane just below the free surface and the middle plane between the free surface and suction nozzle. Quantitative relationships between the circulation, vertical velocity gradient, and gas core length were obtained in time-trends as fundamental data to develop the evaluation method of gas entrainment. Furthermore, it was confirmed that the evaluation method based on a vortex model was an effective way to evaluate gas entrainment.

Journal Articles

Development of a fast reactor and related thermal hydraulics studies in Japan

Ohshima, Hiroyuki; Kamide, Hideki

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.2095 - 2107, 2019/08

Development of a sodium-cooled fast reactor has been implemented in Japan from the viewpoint of severe accident countermeasures. This paper describes the progress of research and development related to safety enhancement and the severe accident countermeasures. A volcanic PRA methodology was developed for the proper consideration of external hazards. Water and sodium experiments were carried out for the decay heat removal in a core disruptive accident (CDA), and also thermal hydraulic interactions between the core and upper plenum where dipped heat exchanger was operated. In order to elucidate the behavior of molten fuel during CDA, basic experiments of core melt fragmentation in deep and shallow sodium pools were carried out. X-ray visualization showed the liquid column of molten steel was intensively fragmented nearly simultaneously with a rapid expansion of sodium vapor.

Journal Articles

Multi-dimensional numerical benchmark analysis of SNL T3 sodium spray combustion experiment with AQUA-SF code

Sonehara, Masateru; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki; Clark, A. J.*; Denman, M. R.*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In order to investigate the effect of sodium combustion, Sandia National Laboratories (SNL) and Japan Atomic Energy Agency (JAEA) have exchanged information of sodium combustion modelling and related experimental data in the framework of Civil Nuclear Energy Research and Development Working Group (CNWG). The benchmark analysis of the SNL T3 sodium spray combustion experiment and sensitivity study have been carried out using the AQUA-SF code in this paper. The sensitivity analysis clarifies the influencing factors of the multi-dimensional analysis such as turbulence models, radiation heat transfer model from sodium droplets, and momentum exchange between gas and droplets. The result shows that the turbulence effect, radiation from droplets and gas temperature increase at spray burning area affect sodium spray burning rate significantly.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

Journal Articles

Subchannel analysis of thermal-hydraulics in a fuel assembly with inner duct structure of a sodium-cooled fast reactor

Kikuchi, Norihiro; Imai, Yasutomo*; Yoshikawa, Ryuji; Doda, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Journal of Nuclear Engineering and Radiation Science, 5(2), p.021001_1 - 021001_12, 2019/04

In the design study of an advanced loop-type sodium-cooled fast reactor in Japan, a specific fuel assembly (FA) named FAIDUS (Fuel Assembly with Inner DUct Structure) has been considered as one of the measures to enhance safety of the reactor during the core disruptive accident. In this study, thermal-hydraulics in FAIDUS was investigated with the in-house subchannel analysis code named ASFRE. Before the application to FAIDUS, applicability of ASFRE to FAs was confirmed through the numerical simulations for the experiments of simulated FA. Through the comparisons between the numerical results of thermal-hydraulic analyses of FAIDUS and a typical FA without the inner duct, it was indicated that significant asymmetric temperature distribution would not occur in FAIDUS at both high and low flow rate conditions.

Journal Articles

Improvement of steam generator tube failure propagation analysis code LEAP for evaluation of overheating rupture

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Kurihara, Akikazu; Hamada, Hirotsugu; Ohshima, Hiroyuki

Journal of Nuclear Science and Technology, 56(2), p.201 - 209, 2019/02

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was developed to expand application range of an existing computer code. Applicability of the method was demonstrated through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

Journal Articles

Development of unstructured mesh-based numerical method for sodium-water reaction phenomenon

Uchibori, Akihiro; Watanabe, Akira*; Takata, Takashi; Ohshima, Hiroyuki

Nuclear Technology, 205(1-2), p.119 - 127, 2019/01

 Times Cited Count:1 Percentile:100(Nuclear Science & Technology)

To evaluate a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the difference method. In this study, unstructured mesh-based numerical method was developed to advance a numerical accuracy for the complex-shaped domain including multiple heat transfer tubes. Numerical analysis of an underexpanded jet experiment was performed as part of validation of the unstructured mesh-based numerical method. The calculated pressure profile and location of the Mach disk showed good agreement with the experimental data. Applicability of the numerical method for the actual situation was confirmed through the analysis of water vapor discharging into liquid sodium.

Journal Articles

Multi-dimensional numerical investigation of sodium spray combustion; Benchmark analysis of SNL T3 experiment

Sonehara, Masateru; Aoyagi, Mitsuhiro; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki; Clark, A. J.*; Denman, M. R.*

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 5 Pages, 2018/11

no abstracts in English

Journal Articles

Development of numerical analysis method for tube failure propagation under sodium-water reaction accident

Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Ohshima, Hiroyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 6 Pages, 2018/11

Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium.

Journal Articles

Development of semi-implicit particle method for simulating sodium-water chemical reaction

Li, J.*; Jang, S.*; Yamaguchi, Akira*; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 4 Pages, 2018/11

The sodium-water reaction model is developed in particle methods. Two chemical reaction model, called surface reaction model and gas-phase reaction model are developed in the particle method. Validation on the case of vapor injection into liquid water is conducted and good consistency of jet velocity evolution along jet trajectory is obtained. Finally, sodium-water chemical reaction in a configuration of multiple tube bundles is simulated. Jet velocity, water vapor fraction and temperature are investigated and reasonable results are observed, which presents promising future of this methodology.

Journal Articles

Study on gas entrainment from unstable drifting vortexes on liquid surface

Hirakawa, Moe*; Kikuchi, Yuichiro*; Sakai, Takaaki*; Tanaka, Masaaki; Ohshima, Hiroyuki

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Gas entrainment (GE) from cover gas is one of key issue for Sodium-cooled fast reactors to prevent unexpected effects to core reactivity. By using a computational fluid dynamics (CFD) code, analyses have been conducted to estimate the drifting vortexes on water experiments which were generated as wake vortexes behind a plate obstacle in the circulating water channel. In this paper, the results of comparison between experiments and analyses were discussed and the gas core lengths from the surface vortexes were evaluated by using the evaluation tool named StreamViewer developed by Japan Atomic Energy Agency.

Journal Articles

Visualization study on droplet-entrainment in a high-speed gas jet into a liquid pool

Sugimoto, Taro*; Saito, Shimpei*; Kaneko, Akiko*; Abe, Yutaka*; Uchibori, Akihiro; Ohshima, Hiroyuki

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 7 Pages, 2018/07

A computational fluid dynamics code for a sodium-water reaction phenomenon in a steam generator of sodium-cooled fast reactors has been developed. In order to provide the data for validation of this code, the visualization experiment on liquid droplet entrainment in the high-pressure air jet submerged in the water pool was carried out. The experiment successfully elucidated the behavior, such as atomization of the relatively large diameter liquid droplet generated from the gas-liquid interface.

577 (Records 1-20 displayed on this page)