Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 94

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Design for detecting recycling muon after muon-catalyzed fusion reaction in solid hydrogen isotope target

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 $$mu$$s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion ($$mu$$CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after $$mu$$CF reaction.

Journal Articles

Time evolution calculation of muon catalysed fusion; Emission of recycling muons from a two-layer hydrogen film

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by $$mu$$ and form a muonic hydrogen molecular ion, dt$$mu$$. Due to the short inter-nuclear distance of dt$$mu$$, the nuclear fusion, d +t$$rightarrow alpha$$ + n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion ($$mu$$CF). Recently, the interest on $$mu$$CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of $$mu$$CF in a two-layered hydrogen isotope target.

Journal Articles

Dynamical response of transition-edge sensor microcalorimeters to a pulsed charged-particle beam

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I.-H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

IEEE Transactions on Applied Superconductivity, 31(5), p.2101704_1 - 2101704_4, 2021/08

 Times Cited Count:1 Percentile:11.15(Engineering, Electrical & Electronic)

A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.

Journal Articles

Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic $$K$$ X rays

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I. H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

Physical Review Letters, 127(5), p.053001_1 - 053001_7, 2021/07

 Times Cited Count:13 Percentile:79.44(Physics, Multidisciplinary)

We observed electronic $$K$$X rays emitted from muonic iron atoms using a superconducting transition-edge-type sensor microcalorimeter. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic $$K$$$$alpha$$ and $$K$$$$beta$$ X rays together with the hypersatellite $$K$$$$alpha$$ X rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the $$L$$-shell electrons, accompanied by electron side-feeding. Assisted by a simulation, this data clearly reveals the electronic $$K$$- and $$L$$-shell hole production and their temporal evolution during the muon cascade process.

Journal Articles

High order harmonics from relativistic electron spikes

Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Faenov, A. Y.*; Pikuz, T. A.*; Kawachi, Tetsuya; Sagisaka, Akito; Koga, J. K.; Mori, Michiaki; Kawase, Keigo*; et al.

RAL-TR-2015-025, P. 22, 2015/00

Journal Articles

High order harmonics from relativistic electron spikes

Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A. Ya.*; Pikuz, T. A.*; Kawachi, Tetsuya; Sagisaka, Akito; et al.

New Journal of Physics (Internet), 16(9), p.093003_1 - 093003_30, 2014/09

 Times Cited Count:30 Percentile:81.06(Physics, Multidisciplinary)

Journal Articles

High power laser developments with femtosecond to nanosecond pulse durations for laser shock science and engineering

Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.

Reza Kenkyu, 42(6), p.441 - 447, 2014/06

We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.

Journal Articles

Current status and future prospects of "J-KAREN"; High contrast, high intensity laser for studying relativistic laser-matter interactions

Kiriyama, Hiromitsu; Mori, Michiaki; Okada, Hajime; Shimomura, Takuya; Nakai, Yoshiki*; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Yogo, Akifumi; Sagisaka, Akito; et al.

JPS Conference Proceedings (Internet), 1, p.015095_1 - 015095_5, 2014/03

We present the design and characterization of a high-contrast, petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. Two saturable absorbers and low-gain optical parametric chirped-pulse amplification (OPCPA) preamplifier in the double CPA laser chain have improved the temporal contrast to 1.4$$times$$10$$^{12}$$ on the subnanosecond time scale at 70 terawatt level. Final uncompressed broadband pulse energy is 28 J, indicating the potential for reaching peak power near 600 terawatt. We also discuss our upgrade to over petawatt level at a 0.1 Hz repetition rate briefly.

Journal Articles

Observation of preformed plasma generated from a thin-foil target for laser-driven proton acceleration

Sagisaka, Akito; Pirozhkov, A. S.; Nishiuchi, Mamiko; Ogura, Koichi; Sakaki, Hironao; Yogo, Akifumi; Mori, Michiaki; Kiriyama, Hiromitsu; Okada, Hajime; Kanazawa, Shuhei; et al.

Reza Kenkyu, 42(2), p.160 - 162, 2014/02

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical and other applications. We have measured the proton yield from thin-foil targets irradiated with a high-intensity Ti:sapphire laser (J-KAREN) at JAEA. The longitudinal extent of the preformed plasma protruding from the front surface of the target is reduced by decreasing the duration of the amplified spontaneous emission (ASE) before the main pulse. The maximum proton energy in the target normal direction increases when the size of the preformed plasma is controlled.

Journal Articles

Xe K-shell X-ray generation using conical nozzle and 25 TW laser

Hayashi, Yukio; Pirozhkov, A. S.; Kando, Masaki; Ogura, Koichi; Kotaki, Hideyuki; Kiriyama, Hiromitsu; Okada, Hajime; Goto, Hideki*; Nishikawa, Tadashi*

Laser and Particle Beams, 31(3), p.419 - 425, 2013/09

 Times Cited Count:1 Percentile:4.63(Physics, Applied)

To increase X-ray photon number generated by laser-cluster interaction, it is important to understand the dependence of X-ray generation on cluster size. We carried out Xe K-shell X-ray generation using a conical nozzle with Xe clusters, the radius of which was controllable by adjusting the backing pressure. The experiment clarifies the result that the Xe K-shell X-ray photon number increases with increasing cluster radius from 8 to 12 nm, and saturates at the radius between 12 and 17 nm. We also investigated the Xe K-shell X-ray photon number dependence on laser intensity, and found that the threshold laser intensity of the Xe K-shell X-ray generation exists between 2$$times$$10$$^{17}$$ and 5$$times$$10$$^{18}$$ W/cm$$^2$$.

Journal Articles

Ultra-intense, high spatio-temporal quality petawatt-class laser system and applications

Kiriyama, Hiromitsu; Shimomura, Takuya; Mori, Michiaki; Nakai, Yoshiki*; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Pirozhkov, A. S.; Esirkepov, T. Z.; Hayashi, Yukio; et al.

Applied Sciences (Internet), 3(1), p.214 - 250, 2013/03

 Times Cited Count:15 Percentile:50(Chemistry, Multidisciplinary)

This paper reviews techniques for improving the temporal contrast and spatial beam quality in an ultra-intense laser system that is based on chirped-pulse amplification (CPA). We describe the design, performance, and characterization of our laser system, which has the potential for achieving a peak power of 600 TW. We also describe applications of the laser system in the relativistically dominant regime of laser-matter interactions and discuss a compact, high efficiency diode-pumped laser system.

Journal Articles

Relativistic high harmonic generation in gas jet targets

Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A. Ya.*; Pikuz, T.; Kawachi, Tetsuya; Sagisaka, Akito; et al.

AIP Conference Proceedings 1465, p.167 - 171, 2012/07

 Times Cited Count:1 Percentile:46.45(Physics, Applied)

Journal Articles

High-order harmonics from bow wave caustics driven by a high-intensity laser

Esirkepov, T. Z.; Pirozhkov, A. S.; Kando, Masaki; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A.*; Pikuz, T.; Kawachi, Tetsuya; Sagisaka, Akito; et al.

AIP Conference Proceedings 1465, p.172 - 180, 2012/07

 Times Cited Count:0 Percentile:0.13(Physics, Applied)

The bow wave induced mechanism of high-order harmonics generation was discovered using simulations and catastrophe theory. This mechanism feasibility was successfully demonstrated in 3D and 2D PIC simulations. The mechanism and the simulations explained high-order harmonics in the XUV spectral region seen in recent experiments with terawatt lasers. Development of new XUV light and X-ray source based on the high-order harmonics generation mechanism is proposed.

Journal Articles

Complementary characterization of radioactivity produced by repetitive laser-driven proton beam using shot-to-shot proton spectral measurement and direct activation measurement

Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.

Japanese Journal of Applied Physics, 51(4), p.048003_1 - 048003_2, 2012/04

 Times Cited Count:2 Percentile:8.93(Physics, Applied)

A proton beam driven by a repetitive high-intensity-laser is utilized to induce a $$^{7}$$Li(p,n)$$^{7}$$Be nuclear reaction. The total activity of $$^{7}$$Be are evaluated by two different methods. The activity obtained measuring the decay $$gamma$$-rays after 1912 shots at 1 Hz is 1.7$$pm$$0.2 Bq. This is in good agreement with 1.6$$pm$$0.3 Bq evaluated from the proton energy distribution measured using a time-of-flight detector and the nuclear reaction cross-sections. We conclude that the production of activity can be monitored in real time using the time-of-flight-detector placed inside a diverging proton beam coupled with a high-speed signal processing system.

Journal Articles

Soft-X-ray harmonic comb from relativistic electron spikes

Pirozhkov, A. S.; Kando, Masaki; Esirkepov, T. Z.; Gallegos, P.*; Ahmed, H.*; Ragozin, E. N.*; Faenov, A. Ya.*; Pikuz, T.; Kawachi, Tetsuya; Sagisaka, Akito; et al.

Physical Review Letters, 108(13), p.135004_1 - 135004_5, 2012/03

 Times Cited Count:69 Percentile:90.73(Physics, Multidisciplinary)

We demonstrate a new high-order harmonic generation mechanism reaching the "water window" spectral region in experiments with multi-terawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving $$mu$$J/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:184 Percentile:99.44(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:8 Percentile:49.7(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

Journal Articles

Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline

Yogo, Akifumi; Maeda, Takuya; Hori, Toshihiko; Sakaki, Hironao; Ogura, Koichi; Nishiuchi, Mamiko; Sagisaka, Akito; Kiriyama, Hiromitsu; Okada, Hajime; Kanazawa, Shuhei; et al.

Applied Physics Letters, 98(5), p.053701_1 - 053701_3, 2011/02

 Times Cited Count:97 Percentile:94.23(Physics, Applied)

Journal Articles

Laser-driven proton generation with a thin-foil target

Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

NIFS-PROC-85, p.30 - 33, 2011/02

The experiment of proton generation is performed for developing the laser-driven ion source. We observe proton signals in the laser-plasma interaction by using a thin-foil target. To get higher energy protons the size of the preformed plasma is reduced by changing the laser contrast level. In the high-contrast laser pulse case the maximum energy of the protons generated at rear side of the target increases.

Journal Articles

Proton generation and terahertz radiation from a thin-foil target with a high-intensity laser

Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Reza Kenkyu, 38(9), p.702 - 705, 2010/09

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. In this study we have tested simultaneous generation of protons and THz radiation from a thin-foil target. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam is focused by an off-axis parabolic mirror at the thin-foil target. We observed the high-energy proton in the rear side of the target and THz radiation in the reflected direction. Next, high energy protons are observed by reducing the size of preformed plasma.

94 (Records 1-20 displayed on this page)