Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Measurement of the spatial polarization distribution of circularly polarized gamma rays produced by inverse Compton scattering

Taira, Yoshitaka*; Endo, Shunsuke; Kawamura, Shiori*; Nambu, Taro*; Okuizumi, Mao*; Shizuma, Toshiyuki*; Omer, M.; Zen, H.*; Okano, Yasuaki*; Kitaguchi, Masaaki*

Physical Review A, 107(6), p.063503_1 - 063503_10, 2023/06

 Times Cited Count:5 Percentile:66.61(Optics)

no abstracts in English

Journal Articles

Visualizing cation vacancies in Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ scintillators by gamma-ray-induced positron annihilation lifetime spectroscopy

Fujimori, Kosuke*; Kitaura, Mamoru*; Taira, Yoshitaka*; Fujimoto, Masaki*; Zen, H.*; Watanabe, Shinta*; Kamada, Kei*; Okano, Yasuaki*; Kato, Masahiro*; Hosaka, Masahito*; et al.

Applied Physics Express, 13(8), p.085505_1 - 085505_4, 2020/08

 Times Cited Count:6 Percentile:30.34(Physics, Applied)

To clarify the existence of cation vacancies in Ce-doped Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ (Ce:GAGG) scintillators, we performed gamma-ray-induced positron annihilation lifetime spectroscopy (GiPALS). GiPAL spectra of GAGG and Ce:GAGG comprised two exponential decay components, which were assigned to positron annihilation at bulk and defect states. By an analogy with Ce:Y$$_{3}$$Al$$_{5}$$O$$_{12}$$, the defect-related component was attributed to Al/Ga-O divacancy complexes. This component was weaker for Ce, Mg:GAGG, which correlated with the suppression of shallow electron traps responsible for phosphorescence. Oxygen vacancies were charge compensators for Al/Ga vacancies. The lifetime of the defect-related component was significantly changed by Mg co-doping. This was understood by considering aggregates of Mg$$^{2+}$$ ions at Al/Ga sites with oxygen vacancies, which resulted in the formation of vacancy clusters.

Journal Articles

Quantitative measurement of hard X-ray spectra for high intensity laser produced plasma

Zhang, Z.*; Nishimura, Hiroaki*; Namimoto, Takura*; Fujioka, Shinsuke*; Arikawa, Yasunobu*; Nishikino, Masaharu; Kawachi, Tetsuya; Sagisaka, Akito; Hosoda, Hirokazu*; Orimo, Satoshi; et al.

Review of Scientific Instruments, 83(5), p.053502_1 - 053502_5, 2012/05

 Times Cited Count:18 Percentile:60.44(Instruments & Instrumentation)

X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. Either a visible CCD detector coupled with a CsI phosphor screen or an imaging plate can be chosen, depending on the signal intensities and exposure times. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced X-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for X-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for specific X-ray line emissions, is derived as a consequence of this work.

Journal Articles

Efficient multi-keV X-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse

Zhang, Z.*; Nishikino, Masaharu; Nishimura, Hiroaki*; Kawachi, Tetsuya; Pirozhkov, A. S.; Sagisaka, Akito; Orimo, Satoshi; Ogura, Koichi; Yogo, Akifumi; Okano, Yasuaki*; et al.

Optics Express (Internet), 19(5), p.4560 - 4565, 2011/02

 Times Cited Count:19 Percentile:65.25(Optics)

$$Kalpha$$ line emission from Mo and Ag plate were experimentally studied by using ultra-high intensity, clean femtosecond laser pulses. Absolutely yield of $$Kalpha$$ X-rays at 17 keV from Mo and 22 keV from Ag were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significant enhancement of $$Kalpha$$ yields were obtained for both Mo and Ag with higher contrast ratios and high irradiance. The conversion efficiencies of 4.28 $$times$$ 10$$^{-5}$$/sr for Mo and 4.84 $$times$$ 10$$^{-5}$$/sr for Ag, the highest values ever obtained, have been demonstarted with the contrast ratio of 10$$^{-10}$$ to 10$$^{-11}$$.

Journal Articles

$${gamma}$$-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation

Sato, Katsutoshi; Nishikino, Masaharu; Okano, Yasuaki*; Oshima, Shinsuke*; Hasegawa, Noboru; Ishino, Masahiko; Kawachi, Tetsuya; Numasaki, Hodaka*; Teshima, Teruki*; Nishimura, Hiroaki*

Radiation Research, 174(4), p.436 - 445, 2010/10

 Times Cited Count:16 Percentile:47.62(Biology)

Usefulness of laser-plasma X-ray pulse for medical and radiation biological studies was investigated and compared with that of conventional sources such as those obtained from a linear accelerator. A cell irradiation system was developed which uses Copper-K$${alpha}$$ (8 keV) lines from an ultra-short high intensity laser to produce plasma. The absorbed dose of the 8 keV laser-plasma X-ray pulse was accurately estimated with Gafchromic EBT film. When the cells were irradiated with approximately 2 Gy of laser plasma X-ray, the circular regions on $${gamma}$$-H2AX positive cells could be clearly identified. Moreover, the number of $${gamma}$$-H2AX and phosphorylated ataxia telangiectasia mutated (ATM) foci induced by 8 keV laser plasma X-ray were comparable to those induced by 4MV X-ray. These results indicate that the laser plasma X-ray source can be useful for radiation biological studies.

Journal Articles

Monochromatic X-ray emission from laser produced plasma with a clean ultra-short laser pulse

Zhang, Z.*; Nishikino, Masaharu; Nishimura, Hiroaki*; Kawachi, Tetsuya; Sagisaka, Akito; Orimo, Satoshi; Ogura, Koichi; Pirozhkov, A. S.; Yogo, Akifumi; Okano, Yasuaki*; et al.

Reza Kenkyu, 38(9), p.698 - 701, 2010/09

Monochromatic X-ray generation from Cu plates was experimentally studied by using a high contrast femtosecond laser pulse. Absolute yield of Ka line at 8 keV was measured as a function of laser pulse contrast ration and irradiation intensity. The conversion efficiency of 8 $$times$$ 10$$^{-5}$$/sr, the highest value ever obtained, has been demonstrated at 5.5 $$times$$ 10$$^{16}$$ W/cm$$^{2}$$ with a contrast ratio of 10$$^{-11}$$.

Journal Articles

Application of laser produced plasma K$$alpha$$ X-ray probe in radiation biology

Nishikino, Masaharu; Sato, Katsutoshi; Hasegawa, Noboru; Ishino, Masahiko; Oshima, Shinsuke*; Okano, Yasuaki*; Kawachi, Tetsuya; Numasaki, Hodaka*; Teshima, Teruki*; Nishimura, Hiroaki*

Review of Scientific Instruments, 81(2), p.026107_1 - 026107_3, 2010/02

 Times Cited Count:23 Percentile:66.45(Instruments & Instrumentation)

An X-ray generation and exposure system dedicated for radiation biology is developed. An X-ray pulse of 8.0 keV in energy as short as 1 ps is generated with a fs-laser pulse, and sample cells are irradiated through a specially designed cell dish with a silicon nitride membrane. DNA double-strand breaks in a nucleus of a human caner cell are caused by X-ray irradiation, and similar DNA breaks are obtained to those with the conventional X-ray source. This result demonstrates feasibility of radiobiological study with a single burst of X-rays shining on a single cell specimen.

Journal Articles

Introduction to plasma fusion energy

Takamura, Shuichi*; Kado, Shinichiro*; Fujii, Takashi*; Fujiyama, Hiroshi*; Takabe, Hideaki*; Adachi, Kazuo*; Morimiya, Osamu*; Fujimori, Naoji*; Watanabe, Takayuki*; Hayashi, Yasuaki*; et al.

Kara Zukai, Purazuma Enerugi No Subete, P. 164, 2007/03

no abstracts in English

Journal Articles

Overview of the national centralized tokamak programme

Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.

Nuclear Fusion, 46(3), p.S29 - S38, 2006/03

 Times Cited Count:13 Percentile:40.60(Physics, Fluids & Plasmas)

The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.

Oral presentation

Development of gamma-ray induced positron annihilation spectroscopy

Taira, Yoshitaka*; Sugita, Kento*; Okano, Yasuaki*; Fujimoto, Masaki*; Hirade, Tetsuya

no journal, , 

Positron annihilation spectroscopy is a powerful analytical method that can observe single-atom vacant defects in crystals and micro voids in insulating materials. UVSOR-III installed at the Institute of Molecular Science is promoting the development and user use of Gamma-ray induced positron annihilation spectroscopy (GiPAS) by ultrashort pulse gamma rays. Since the ultrashort pulse gamma rays generate positrons inside the material by pair production, positron annihilation experiments of bulk materials with a thickness of several cm can be performed non-destructively. We have succeeded in the generation of ultrashort pulse gamma rays and positron annihilation experiments such as the lifetime measurement and the positron age-momentum correlation measurement.

Oral presentation

Development of gamma-ray induced positron annihilation spectroscopy

Taira, Yoshitaka*; Sugita, Kento*; Yamamoto, Ryohei*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

Positron annihilation spectroscopy is a powerful analytical method to observe single-atom vacant defects in crystals and microvoids in insulating materials. UVSOR-III installed at the Institute of Molecular Science promotes the development and user use of Gamma-ray induced positron annihilation spectroscopy (GiPAS) by ultrashort pulse gamma rays. Since the ultrashort pulse gamma rays generate positrons inside the material by pair production, positron annihilation experiments of bulk materials with a thickness of several cm can be performed non-destructively. In addition, since the sample is irradiated with gamma rays from the outside, measurement can be performed in an environment such as high temperature, high pressure, and immersion. We report on the generation of ultrashort pulse gamma rays and the development status of the positron lifetime measurement, and the positron age-momentum correlation measurement.

Oral presentation

Development of gamma ray induced positron annihilation spectroscopy

Taira, Yoshitaka*; Sugita, Kento*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

We applied the ultra-short pulsed gamma rays to positron annihilation spectroscopy (PAS). PAS using high energy gamma-rays, called gamma induced PAS (GiPAS), has several advantages compared with PAS using radioisotopes. (i) It enables defect analysis of thick material in a few centimetres because positrons are created throughout a bulk material via pair production by irradiation with gamma-rays having high penetration into the material. (ii) There is no contribution of positrons annihilated in the covering material of the shield sources, making the data analysis easy and accurate.

Oral presentation

Gamma ray induced positron annihilation spectroscopy at UVSOR-III

Taira, Yoshitaka*; Sugita, Kento*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

We have developed the gamma-ray induced positron annihilation lifetime spectroscopy (GiPALS) with a time resolution of 140 ps. It has eight BaF$$_{2}$$ detectors and two digital oscilloscopes currently available for users. In addition to GiPALS, we have developed gamma-ray induced age-momentum correlation (GiAMOC). We will present a generation method of the ultra-short pulsed gamma-rays, details of GiPALS and GiAMOC, and future plans, including the development of a spin-polarized positron source generated from circularly polarized gamma rays.

Oral presentation

Gamma ray induced positron annihilation spectroscopy at UVSOR-III BL1U

Taira, Yoshitaka*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

We are developing gamma-ray-induced positron annihilation spectroscopy (GiPAS) using ultra-short pulsed gamma rays at the UVSOR synchrotron facility in Japan. The gamma rays with the pulse width of picosecond range are generated by 90-degree inverse Compton scattering between a 750 MeV electron beam and an 800 nm laser. As the energy of the gamma rays is 6.6 MeV, gamma-ray irradiation produces positrons by pair production inside the material. Generated positrons localize on atomic-scale defects in solid crystals, such as vacancies, dislocations, and vacancy clusters. Positronium, the bound state of an electron-positron pair, localizes in vacant space caused by the free volume in polymers. Therefore, positrons are excellent probes of the nanostructure of these materials. Furthermore, the circularly polarized gamma rays generated by a circularly polarized laser can produce spin polarized positrons. The spin polarized positrons provide additional information about the electron spins around defects. GiPAS is currently available for users in UVSOR-III.

Oral presentation

Development of focused laser plasma X-ray beam for radiobiological applications

Nishikino, Masaharu; Okano, Yasuaki*; Sato, Katsutoshi*; Hasegawa, Noboru; Ishino, Masahiko; Oshima, Shinsuke*; Kawachi, Tetsuya; Numasaki, Hodaka*; Teshima, Teruki*; Nishimura, Hiroaki*

no journal, , 

Recently, high energy, monochromatic X-rays emanating from laser-produced plasma (LPP) are attracting much attention as a new radiation source indispensable for high energy density physics, bioscience, and material sciences. Aiming at these applications, we have been improving performances of Ka lines emitted from and soft X-ray lasers. The monochromaticity is particularly important when X-rays are handled with a narrow-band optics or used to selectively excite a specific material involved in matters. In addition, time-duration of such sources is typically an order of pico-second, and it could be comparable or even shorter than recovery time of radiatively-damaged biological cell, so that the LPP source can be a new source for investigating the mechanisms of irradiation survival and death of biological cells. We propose to develop an ultrashort, intense X-ray microbeam system to study the radiobiological effect and the bystander effect.

Oral presentation

Monoenergetic hard X-ray emission using ultra-short laser pulses with high contrast

Nishikino, Masaharu; Zhang, Z.*; Nishimura, Hiroaki*; Kawachi, Tetsuya; Pirozhkov, A. S.; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Okano, Yasuaki*; Oshima, Shinsuke*; et al.

no journal, , 

no abstracts in English

Oral presentation

Development of gamma ray-induced positron annihilation spectroscopy at UVSOR-III

Taira, Yoshitaka*; Sugita, Kento*; Yamamoto, Ryohei*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

We are developing gamma-ray-induced positron annihilation spectroscopy at UVSOR-III. This method enables defect analysis of the entire bulk sample with a thickness of several cm, which was difficult to measure with the conventional method using a positron radiation source. Currently, the user use of the positron lifetime measurement method is being developed, and in parallel with this, the coincidence Doppler broadening method, the age-momentum correlation measurement method, and the spin-polarized positron spectroscopy are being developed. Here, we will describe the development status of them.

Oral presentation

Development of gamma ray sources and their application studies in UVSOR-III

Taira, Yoshitaka*; Sugita, Kento*; Okano, Yasuaki*; Hirade, Tetsuya; Endo, Shunsuke; Zen, H.*; Shizuma, Toshiyuki*

no journal, , 

At UVSOR, a synchrotron radiation facility at the Institute for Molecular Science, gamma rays are generated by inverse Thomson scattering. Compared to gamma rays generated from radioisotopes and bremsstrahlung gamma rays, it has excellent features such as variable energy, quasi-monochromatic, low background, and high directivity. It is also possible to generate polarized gamma rays by using a polarized laser. Using this gamma ray, nuclear physics experiments such as isotope imaging by nuclear resonance fluorescence scattering, evaluation of gamma ray detectors, and research on material analysis by gamma ray-induced positron annihilation spectroscopy are being carried out. Positron annihilation spectroscopy is a powerful method that can analyze defects of sub-nm to several nm such as monatomic vacancies. Positrons can also be generated from gamma rays by pair production. By irradiating the sample with gamma rays, positrons are generated inside the sample, and it is possible to analyze defects in a bulk sample with a thickness of several cm. At this year's meeting, we will present the development of gamma ray sources in UVSOR, the magnetic Compton scattering experiment of circularly polarized gamma rays, the development of gamma ray-induced positron annihilation spectroscopy, and the development of measurement technology for spin-polarized positrons using circularly polarized gamma rays.

Oral presentation

Development of gamma ray-induced positron annihilation spectroscopy at UVSOR-III

Taira, Yoshitaka*; Sugita, Kento*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

Positron annihilation spectroscopy is a powerful analytical method that can measure vacant defects in crystals and microvoids in insulating materials. UVSOR-III is developing gamma-ray-induced positron annihilation spectroscopy using ultrashort pulse gamma rays. Specifically, we have succeeded in positron annihilation lifetime (PAL) measurement and positron age-momentum correlation (AMOC) measurement. PAL has succeeded in directly measuring the spectrum of only the sample. In addition, AMOC also succeeded in observing the positron annihilation only in the samples, which shows the different momentum distribution for the different defect states. At present, coincidence Doppler broadening (COB) measurement is also available, and a CDB spectrum with only positron annihilation from the sample will be obtained by the newly developed analysis program.

Oral presentation

Ultra-short pulsed gamma rays and its application to material science

Taira, Yoshitaka*; Sugita, Kento*; Okano, Yasuaki*; Hirade, Tetsuya

no journal, , 

We have developed ultra-short, pulsed gamma rays at the synchrotron radiation facility UVSOR-III by a 90-degree collision between a 750-MeV electron beam and a Ti:Sa laser pulse. The maximum energy of the gamma rays is 6.6 MeV and the pulse width is calculated to be sub-ps to ps ranges. We applied this ultra-short, pulsed gamma rays to positron annihilation spectroscopy (PAS). A positron is an excellent probe of atomic-scale defects in solids such as vacancies, dislocations, and clusters and of free volumes in polymers. PAS using a high energy gamma-ray, which is called gamma induced PAS (GiPAS), has several advantages compared with PAS using Na-22. We will present a generation method of the ultra-short, pulsed gamma rays and details of GiPAS.

30 (Records 1-20 displayed on this page)