Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Taguchi, Miki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Ozawa, Satoru*; Hasegawa, Ryuichi*; Morimitsu, Yuma*; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Polymer Journal, 7 Pages, 2025/03
Horiike, Yuki*; Aoki, Hiroyuki; Ouchi, Makoto*; Terashima, Takaya*
Journal of the American Chemical Society, 147(8), p.6727 - 6738, 2025/02
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Yamamoto, Katsuhiro*; Imai, Tatsuya*; Kawai, Atsuki*; Ito, Eri*; Miyazaki, Tsukasa*; Miyata, Noboru*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki
ACS Applied Materials & Interfaces, 16(48), p.66782 - 66791, 2024/11
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Miyazaki, Tsukasa*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Takenaka, Mikihito*; Nakanishi, Yohei*; Shibata, Motoki*; Aoki, Hiroyuki; Yamada, Norifumi*; et al.
Colloids and Surfaces A; Physicochemical and Engineering Aspects, 701, p.134928_1 - 134928_8, 2024/11
Times Cited Count:0 Percentile:0.00(Chemistry, Physical)Park, I. W.*; Sako, Hiroyuki; Aoki, Kazuya*; Gubler, P.; Lee, S. H.*
Journal of Subatomic Particles and Cosmology (Internet), 1-2, p.100014_1 - 100014_11, 2024/11
Morita, Keisuke; Aoki, Takeshi; Shimizu, Atsushi; Sato, Hiroyuki
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 6 Pages, 2024/11
Machida, Akihiko*; Saito, Hiroyuki*; Sugimoto, Hidehiko*; Hattori, Takanori; Sano, Asami; Endo, Naruki*; Katayama, Yoshinori*; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.
Nature Communications (Internet), 15, p.8861_1 - 8861_2, 2024/10
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)In our previous article (Nature Commun. 5, 5063 (2014)), the site occupancies of D atoms dissolved in an fcc Fe metal lattice were investigated via Rietveld refinement of neutron powder diffraction patterns collected at 988 K and 6.3 GPa. The fcc metal lattice has two interstitial sites available for accommodating D atoms: octahedral and tetrahedral sites. The Rietveld refinement revealed that D atoms occupied mainly the octahedral sites with occupancy of 0.532 and slightly the tetrahedral sites with occupancy of 0.056. Subsequent density-functional-theory (DFT) calculations by Antonov (Phys. Rev. Mater. 2019)) showed that the occupation energy on the tetrahedral site was significantly higher than that on the octahedral site; the tetrahedral site occupation was unlikely to occur even at temperatures as high as 988 K. We reexamined the site occupancies of D-atom by Rietveld refinement including extinction correction. As a result, the octahedral occupancy was increased to 0.60 and the tetrahedral occupancy was reduced to zero. The occupation of only the octahedral site for D atom is consistent with the DFT calculation, although in contrast to the previous results.
Aoki, Takeshi; Hasegawa, Takeshi; Kurahayashi, Kaoru; Nomoto, Yasunobu; Shimizu, Atsushi; Sato, Hiroyuki; Sakaba, Nariaki
Proceedings of 11th International Topical Meeting on High Temperature Reactor Technology (HTR 2024), 6 Pages, 2024/10
Japan Atomic Energy Agency (JAEA) is planning to perform a test named HTTR heat application test coupling HTTR (High temperature engineering test reactor) and a hydrogen production plant. The present study reports results of the safety design and safety analysis for HTTR heat application test facility. As a safety design, safety classification of structures, systems, and components was defined in the test facility based on their safety functions. As a preliminary safety analysis, a thermal-hydraulic analysis was performed with RELAP5 code. The safety analysis revealed that newly identified events for HTTR heat application test facility except for the rupture of heat transfer tube of steam generator was enveloped by the licensing basis events in conventional HTTR. The preliminary analysis proved that the safety criteria is satisfied in the candidate of licensing basis event.
Uchida, Kazuto*; Masuda, Tsukuru*; Hara, Shintaro*; Matsuo, Yoichi*; Liu, Y.*; Aoki, Hiroyuki; Asano, Yoshihiko*; Miyata, Kazuki*; Fukuma, Takeshi*; Ono, Toshiya*; et al.
ACS Applied Materials & Interfaces, 16(30), p.39104 - 39116, 2024/07
Times Cited Count:1 Percentile:0.00(Nanoscience & Nanotechnology)Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Shibata, Motoki*; Nakanishi, Yohei*; Arakawa, Masato*; Takenaka, Mikihito*; Kida, Takumitsu*; Tokumitsu, Katsuhisa*; Tanaka, Ryo*; et al.
Langmuir, 40(30), p.15758 - 15766, 2024/07
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Kawano, Masayuki*; Morimitsu, Yuma*; Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Kawaguchi, Daisuke*; Yamamoto, Satoru*; Tanaka, Keiji*
Macromolecules, 57(14), p.6625 - 6633, 2024/07
Times Cited Count:0 Percentile:0.00(Polymer Science)Sujita, Ryota*; Aoki, Hiroyuki; Takenaka, Mikihito*; Ouchi, Makoto*; Terashima, Takaya*
ACS Macro Letters (Internet), 13(6), p.747 - 753, 2024/06
Times Cited Count:1 Percentile:47.49(Polymer Science)Park, I. W.*; Sako, Hiroyuki; Aoki, Kazuya*; Gubler, P.; Lee, S. H.*
Physical Review D, 109(11), p.114042_1 - 114042_10, 2024/06
Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)Mori, Yuichiro*; Kagi, Hiroyuki*; Aoki, Katsutoshi*; Takano, Masahiro*; Kakizawa, Sho*; Sano, Asami; Funakoshi, Kenichi*
Earth and Planetary Science Letters, 634, p.118673_1 - 118673_8, 2024/05
Times Cited Count:1 Percentile:58.96(Geochemistry & Geophysics)To investigate silicon effects on the hydrogen-induced volume expansion of iron, neutron diffraction and X-ray diffraction experiments were conducted to examine hcp-FeSi
under high pressures and high temperatures. Neutron diffraction experiments were performed on the deuterated hcp-Fe
Si
at 13.5 GPa and 900 K, and at 12.1 GPa and 300 K. By combining the P-V-T equation of state of hcp-Fe
Si
, present results indicate that the hydrogen-induced volume expansion of hcp-Fe
Si
is 10% greater than that of pure hcp iron. Using the obtained values, we estimated the hydrogen content that would reproduce the density deficit in the inner core, which was 50% less than that without the effect of silicon. Possible hydrogen content,
, in the inner core and the outer core was calculated to be 0.07 and 0.12-0.15, respectively, when reproducing the density deficit of the inner core with hcp-Fe
Si
Hx.
Ikami, Takaya*; Aoki, Hiroyuki; Terashima, Takaya*
ACS Macro Letters (Internet), 13(4), p.446 - 452, 2024/04
Times Cited Count:0 Percentile:0.00(Polymer Science)Takano, Masahiro*; Kagi, Hiroyuki*; Mori, Yuichiro*; Aoki, Katsutoshi*; Kakizawa, Sho*; Sano, Asami; Iizuka-Oku, Riko*; Tsuchiya, Taku*
Journal of Mineralogical and Petrological Sciences (Internet), 119(1), p.240122_1 - 240122_9, 2024/00
Times Cited Count:0 Percentile:0.00(Mineralogy)Hydrogenation of iron sulfide (FeS) under high-pressure and high-temperature conditions has attracted attention because hydrogen and sulfur are promising candidates as light elements in the cores of the Earth and other terrestrial planets. In earlier reports describing the hydrogenation of FeS, the chemical compositions of starting materials were not fully clarified. This study reports in-situ neutron and X-ray diffraction measurements under high-pressure and high-temperature conditions of an Fe-S-H system using a stochiometric Fe1.000S (troilite) as a starting material. The occupancies determined were significantly lower than those reported from earlier studies, indicating that the hydrogenation of FeS can be affected strongly by the stoichiometry of iron sulfide.
Arima-Osonoi, Hiroshi*; Takata, Shinichi; Kasai, Satoshi*; Ouchi, Keiichi*; Morikawa, Toshiaki*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Iwase, Hiroki*; Hiroi, Kosuke; et al.
Journal of Applied Crystallography, 56(6), p.1802 - 1812, 2023/12
Times Cited Count:4 Percentile:73.01(Chemistry, Multidisciplinary)Sujita, Ryota*; Imai, Sahori*; Ouchi, Makoto*; Aoki, Hiroyuki; Terashima, Takaya*
Macromolecules, 56(23), p.9738 - 9749, 2023/12
Times Cited Count:3 Percentile:34.80(Polymer Science)Aoki, Hiroyuki
Hamon, 33(4), p.142 - 145, 2023/11
Hashimoto, Kei*; Shiwaku, Toru*; Aoki, Hiroyuki; Yokoyama, Hideaki*; Mayumi, Koichi*; Ito, Kozo*
Science Advances (Internet), 9(47), p.eadi8505_1 - eadi8505_8, 2023/11
Times Cited Count:44 Percentile:97.60(Multidisciplinary Sciences)