Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 28

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Circuit simulation model for the RF system of J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Miyakoshi, Ryosuke*; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Hara, Keigo*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.765 - 769, 2024/10

no abstracts in English

Journal Articles

Mitigation of cavity voltage jump due to high intensity beam extraction in J-PARC RCS

Tamura, Fumihiko; Sugiyama, Yasuyuki*; Okita, Hidefumi; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.774 - 776, 2024/10

The 3GeV RCS of J-PARC accelerates proton beams with a maximum beam intensity of 8e13 ppp, utilizing the features of magnetic alloy (MA) cavities. The beam is extracted in a single turn by kicker magnets, and immediately after the beam is extracted, a short voltage jump occurs in the cavity. This is due to a delay in the voltage control feedback, which takes a certain amount of time to respond to the step-like decrease of beam current upon single-turn extraction. In a wideband (Q=2) MA cavity, this response delay is observed as a voltage jump. This voltage jump can cause damage to the cavity system if the voltage at the time of extraction is high. Therefore, we prepared a logic to suppress the output synchronously with the beam extraction as a function of the LLRF control system. The details of the function and test results are reported.

Journal Articles

Benchmarking GPU backend of longitudinal simulation code BLonD

Adachi, Kyosuke; Tamura, Fumihiko; Nomura, Masahiro; Shimada, Taihei; Miyakoshi, Ryosuke*; Okita, Hidefumi; Yoshii, Masahito*; Omori, Chihiro*; Seiya, Kiyomi*; Hara, Keigo*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.543 - 546, 2024/10

no abstracts in English

Journal Articles

Applying a deep generative model to mountain plot images

Nomura, Masahiro; Shimada, Taihei; Tamura, Fumihiko; Okita, Hidefumi; Miyakoshi, Ryosuke*; Seiya, Kiyomi*; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; et al.

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.85 - 88, 2024/10

no abstracts in English

Journal Articles

Improvement of the longitudinal phase space tomography at the J-PARC synchrotrons

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Saha, P. K.; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; et al.

Journal of Physics; Conference Series, 2687(7), p.072005_1 - 072005_7, 2024/01

 Times Cited Count:0

Longitudinal phase space tomography is an effective measurement tool for acquiring the longitudinal phase space distribution. For the J-PARC synchrotrons, tomography, which can take into account the beam dynamics such as longitudinal space charge effect and nonlinearity, is desired, as the beam power increases. In this study, for the J-PARC synchrotron, the CERN's tomography, which employs the hybrid algorithm that can consider the beam dynamics for reconstruction, is introduced and benchmarked. The benchmark results show that the CERN's tomography has the ability to measure the longitudinal phase space distribution accurately, in the high-power beam operation at the J-PARC synchrotrons.

Journal Articles

Consideration of high intensity single bunch acceleration in J-PARC RCS

Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11

The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.

Journal Articles

Beyond 1-MW scenario in J-PARC rapid-cycling synchrotron

Yamamoto, Kazami; Moriya, Katsuhiro; Okita, Hidefumi; Yamada, Ippei; Chimura, Motoki; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Masanobu; Morishita, Takatoshi; et al.

Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.270 - 273, 2023/10

The 3-GeV rapid-cycling synchrotron at the Japan Pro-ton Accelerator Research Complex was designed to provide 1-MW proton beams to the following facilities. Thanks to the improvement works of the accelerator system, we successfully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce requirement of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also continued study to achieve more than 2 MW beam in J-PARC RCS.

Journal Articles

RF systems of J-PARC proton synchrotrons for high-intensity longitudinal beam optimization and handling

Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Okita, Hidefumi; Seiya, Kiyomi*; Nomura, Masahiro; Shimada, Taihei; Hasegawa, Katsushi*; et al.

Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.305 - 311, 2023/10

The application of MA cores to the accelerating rf cavities in high intensity proton synchrotrons was pioneered for the J-PARC synchrotrons. The MA cavities can generate high accelerating voltages. The wideband frequency response of the MA cavity enables the frequency sweep without the tuning loop. The dual harmonic operation is indispensable for the longitudinal bunch shaping to alleviate the space charge effects in the RCS. These advantages of the MA cavity are also disadvantages when looking at them from a different perspective. Since the wake voltage consists of several harmonics, the beam loading compensation must be multiharmonic. The operation of tubes in the final stage amplifier is not trivial when accelerating very high intensity beams; the output current is high and the anode voltage is also multiharmonic. We summarize our effort against these issues in the operation of the RCS and MR for more than 10 years.

Journal Articles

1-MW beam operation at J-PARC RCS with minimum beam loss

Saha, P. K.; Harada, Hiroyuki; Okabe, Kota; Okita, Hidefumi; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yoshimoto, Masahiro; Hotchi, Hideaki*

Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.147 - 152, 2023/10

Journal Articles

Development of a single-ended magnetic alloy loaded cavity in the Japan Proton Accelerator Research Complex rapid cycling synchrotron

Yamamoto, Masanobu; Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Progress of Theoretical and Experimental Physics (Internet), 2023(7), p.073G01_1 - 073G01_16, 2023/07

 Times Cited Count:1 Percentile:0.00(Physics, Multidisciplinary)

The Japan Proton Accelerator Research Complex (J-PARC) Rapid Cycling Synchrotron (RCS) employs Magnetic Alloy (MA) loaded cavities. We realize multi-harmonic rf driving and beam loading compensation owing to the broadband characteristics of the MA. The currently installed cavity is the conventional type one which is designed to be driven by tube amplifiers in a push-pull operation. The push-pull operation has some advantages, i.e., suppressing a higher harmonic distortion without the beam acceleration and shortening the cavity length. However, a disadvantage arises at the high intensity beam acceleration where the multi-harmonic rf driving causes a severe imbalance of the anode voltage swing and restricts the tube operation. Although we have achieved an acceleration for the design beam power of 1 MW, the imbalance becomes an issue to further increase the beam power. We have developed a single-ended MA cavity to avoid such difficulty. The cavity has no tube imbalance intrinsically and it is found that the power consumption to drive the cavity can be reduced compared with the conventional one.

Journal Articles

Recent results of beam loss mitigation and extremely low beam loss operation of J-PARC RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Yoshimoto, Masahiro; Hotchi, Hideaki*

Journal of Physics; Conference Series, 2420, p.012040_1 - 012040_7, 2023/01

Journal Articles

Design studies on a high-power wide-band RF combiner for consolidation of the driver amplifier of the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.

Journal of Physics; Conference Series, 2420, p.012092_1 - 012092_6, 2023/01

A power upgrade of existing 8 kW solid-state driver amplifier is required for the acceleration of high intensity proton beams on the J-PARC 3 GeV rapid cycling synchrotron. The development of a 25 kW amplifier with gallium nitride (GaN) HEMTs, based on 6.4 kW modules is on going. The combiner is a key component to achieve such a high output power over the wide bandwidth required for multi-harmonic rf operation. This paper presents preliminary design of the combiner. The circuit simulation setup and results, including the realistic magnetic core characteristics and frequency response of the cable are reported.

Journal Articles

Effects of the longitudinal impedances on non-adiabatic bunch manipulation at flattop of J-PARC MR

Tamura, Fumihiko; Omori, Chihiro*; Yoshii, Masahito*; Tomizawa, Masahito*; Toyama, Takeshi*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Kobayashi, Aine*; Okita, Hidefumi

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.175 - 178, 2023/01

J-PARC MR delivers high intensity proton beams to the neutrino experiment. Eight bunches with high peak currents are extracted from the MR by the extraction kicker, therefore the neutrino beam has the similar structure. Intermediate Water Cherenkov Detector (IWCD) will be installed for the future experiments and the IWCD requires a time structure with low peaks. We consider bunch manipulation at flattop of the MR for reducing the peak current. It should be quickly done to avoid the significant loss of the beam power. The beam gap for the kicker rise time must be kept. We propose a non-adiabatic bunch manipulation using the multiharmonic rf voltage. The longitudinal impedance in the MR can affect the beam stability. The feasibility of the manipulation is discussed by using the longitudinal simulations.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron, 2

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.

Journal Articles

Image recognition technology is used to obtain momentum distribution and longitudinal beam shape from mountain plot image

Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; Omori, Chihiro*; Yoshii, Masahito*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.215 - 217, 2023/01

no abstracts in English

Journal Articles

Evaluation of higher harmonics generated in acceleration gaps during the high power beam acceleration at J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.262 - 266, 2023/01

no abstracts in English

Journal Articles

Achievement of low beam loss at high-intensity operation of J-PARC 3 GeV RCS

Saha, P. K.; Okabe, Kota; Nakanoya, Takamitsu; Yoshimoto, Masahiro; Shobuda, Yoshihiro; Harada, Hiroyuki; Tamura, Fumihiko; Okita, Hidefumi; Hatakeyama, Shuichiro; Moriya, Katsuhiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1 - 5, 2023/01

Journal Articles

Improvement of longitudinal beam tracking simulation considering the frequency response of the cavity gap voltage monitor

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*

Nuclear Instruments and Methods in Physics Research A, 1041, p.167361_1 - 167361_7, 2022/10

 Times Cited Count:2 Percentile:22.33(Instruments & Instrumentation)

Wideband RF cavities are employed in the Rapid Cycling Synchrotron of the Japan Proton Accelerator Research Complex. RF gap voltage generated during the high power beam acceleration includes the wake voltage and distortion derived from the tube amplifier. The signal from RF gap voltage monitors, which measure the RF gap voltage during the acceleration, includes these effects. We developed the longitudinal beam tracking simulation using the measurement of the RF gap voltage monitors. To apply the measurement of the RF gap voltage monitors to the simulation, the theoretical frequency response models of the voltage divider and the coaxial cable, which are the primary components of the cavity gap voltage monitor, are developed. By taking the frequency response into account, the tracking simulation well reproduces the measured bunch shape at 1 MW.

Journal Articles

Influence of a positive grid biasing on RF system in J-PARC RCS

Yamamoto, Masanobu; Nomura, Masahiro; Okita, Hidefumi; Shimada, Taihei; Tamura, Fumihiko; Hara, Keigo*; Hasegawa, Katsushi*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Yoshii, Masahito*

Proceedings of 13th International Particle Accelerator Conference (IPAC 22) (Internet), p.1336 - 1338, 2022/06

In order to accelerate a high intensity beam in the RCS, a large amplitude of the rf current is provided by a tube amplifier to compensate a heavy beam loading. Tetrode vacuum tubes are used in the RCS, and the control grid voltage enters into a positive region to feed such a large rf current. The positive grid biasing affects the waveform of the control grid voltage; it is deformed due to the induced control grid current under the condition of the multi-harmonic rf driving. Furthermore, the DC bias voltage drop on the control grid is observed because of the exceeding the capability for the control grid power supply. We describe the influence of the positive grid biasing in the RCS.

Journal Articles

Evaluation of the frequency response of the RF gap voltage monitor of the J-PARC RCS

Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Hara, Keigo*; Hasegawa, Katsushi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.840 - 844, 2021/10

The J-PARC RCS employs the dual-harmonic operation, in which the fundamental and the second harmonic RF voltages are used for the beam acceleration. The each harmonic voltage and phase applied for the acceleration gaps are controlled by the multiharmonic vector RF voltage control system using the signal from the cavity gap voltage monitor equipped with the one of the acceleration gaps of the each RF cavity. Since the bunch shape varies depending on the relative phase of each harmonic, it is important to evaluate the frequency response of the cavity gap voltage monitor. The measurements of frequency response of the cavity gap voltage monitor and beam tracking simulation considering the measurement were carried out. As a result, it was confirmed that the bunch shape of the beam tracking simulation reproduces the one measured at the 1MW beam operation well. The details of the frequency response measurement, the beam tracking simulation and the discussion of the cavity gap voltage monitor circuit are reported.

28 (Records 1-20 displayed on this page)