Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Operation and commissioning of IFMIF (International Fusion Materials Irradiation Facility) LIPAc injector

Okumura, Yoshikazu; Gobin, R.*; Knaster, J.*; Heidinger, R.*; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; et al.

Review of Scientific Instruments, 87(2), p.02A739_1 - 02A739_3, 2016/02

 Times Cited Count:7 Percentile:35.23(Instruments & Instrumentation)

IFMIF is an accelerator based neutron facility having two set of linear accelerators each producing 125mA/CW deuterium ion beams (250mA in total) at 40MeV. The LIPAc (Linear IFMIF Prototype Accelerator) being developed in the IFMIF-EVEDA project consists of an injector, a RFQ accelerator, and a part of superconducting Linac, whose target is to demonstrate 125mA/CW deuterium ion beam acceleration up to 9MeV. The injector has been developed in CEA Saclay and already demonstrated 140mA/100keV deuterium beam. The injector was disassembled and delivered to the International Fusion Energy Research Center (IFERC) in Rokkasho, Japan, and the commissioning has started after its reassembly 2014; the first beam production has been achieved in November 2014. Up to now, 100keV/120mA/CW hydrogen ion beam has been produced with a low beam emittance of 0.2 $$pi$$.mm.mrad (rms, normalized).

Journal Articles

Measurement of ion species in high current ECR H$$^+$$/D$$^+$$ ion source for IFMIF (International Fusion Materials Irradiation Facility)

Shinto, Katsuhiro; Sen$'e$e, F.*; Ayala, J.-M.*; Bolzon, B.*; Chauvin, N.*; Gobin, R.*; Ichimiya, Ryo; Ihara, Akira; Ikeda, Yukiharu; Kasugai, Atsushi; et al.

Review of Scientific Instruments, 87(2), p.02A727_1 - 02A727_3, 2016/02

 Times Cited Count:8 Percentile:39.15(Instruments & Instrumentation)

Journal Articles

Progress of the high current Prototype Accelerator for IFMIF/EVEDA

Okumura, Yoshikazu; Ayala, J.-M.*; Bolzon, B.*; Cara, P.*; Chauvin, N.*; Chel, S.*; Gex, D.*; Gobin, R.*; Harrault, F.*; Heidinger, R.*; et al.

Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.203 - 205, 2015/09

Under the framework of Broader Approach (BA) agreement between Japan and Euratom, IFMIF/EVEDA project was launched in 2007 to validate the key technologies to realize IFMIF. The most crucial technology to realize IFMIF is two set of linear accelerator each producing 125mA/CW deuterium ion beams up to 40MeV. The prototype accelerator, whose target is 125mA/CW deuterium ion beam acceleration up to 9MeV, is being developed in International Fusion Research Energy Center (IFERC) in Rokkasho, Japan. The injector developed in CEA Saclay was delivered in Rokkasho in 2014, and is under commissioning. Up to now, 100keV/120mA/CW hydrogen ion beams and 100keV/90mA/CW duty deuterium ion beams are successfully produced with a low beam emittance of 0.21 $$pi$$.mm.mrad (rms, normalized). Delivery of RFQ components will start in 2015, followed by the installation of RF power supplies in 2015.

JAEA Reports

A Procedure for the determination of scenario earthquakes for seismic design based on probabilistic seismic hazard analysis

Hirose, Jiro*; Muramatsu, Ken; Okumura, Toshihiko*; Taki, Satoshi*

JAERI-Research 2002-009, 220 Pages, 2002/03

JAERI-Research-2002-009.pdf:13.31MB

This report presents procedures for the determination of Scenario Earthquakes for seismic design based on Probabilistic Seismic Hazard Analysis (PSHA). Recently PSHA was recognized as an important basis to identify dominant earthquakes predicted to threaten the site in future. The identified earthquakes are called Probability-Based Scenario Earthquakes (PBSEs). The concept of PBSEs originates from the studies of US NRC and Ishikawa & Kameda. The objective of this study is to formulate the procedures to determine the PBSEs and, through this application, to demonstrate the feasibility of the application to seismic design. This report consists of three parts, namely, procedures to compile analytical conditions for PBSEs, an assessment to determine PBSEs for a model site using the Ishikawa's concept and examination of uncertainty involved in analytical conditions. The results imply that the procedures based on the Ishikawa's concept is a useful evaluation technique to determine scenario earthquakes for seismic design considering uncertainty involved in analytical conditions.

Journal Articles

Fusion reactor technology; Challenge to future energy

Seki, Masahiro; Hishinuma, Akimichi; Kurihara, Kenichi; Akiba, Masato; Abe, Tetsuya; Ishitsuka, Etsuo; Imai, Tsuyoshi; Enoeda, Mikio; Ohira, Shigeru; Okumura, Yoshikazu; et al.

Kaku Yugoro Kogaku Gairon; Mirai Enerugi Eno Chosen, 246 Pages, 2001/09

no abstracts in English

Journal Articles

Technical issues on incorporating probability-based scenario earthquakes into seismic design of nuclear power plants

Hirose, Jiro*; Muramatsu, Ken; Okumura, Toshihiko*; Taki, Satoshi*; Takada, Tsuyoshi*

Proceedings of 5th International Conference on Probabilistic Safety Assessment and Management (PSAM-5), p.1383 - 1390, 2000/00

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1