Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 200

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Muon spin relaxation in mixed perovskite (LaAlO$$_3$$)$$_x$$(SrAl$$_{0.5}$$Ta$$_{0.5}$$O$$_3$$)$$_{1-x}$$ with $$xsimeq 0.3$$

Ito, Takashi; Higemoto, Wataru; Koda, Akihiro*; Nakamura, Jumpei*; Shimomura, Koichiro*

Interactions (Internet), 245(1), p.25_1 - 25_7, 2024/12

Journal Articles

Pulsed muon facility of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Sunagawa, Hikaru*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Fujihara, Masayoshi; Tampo, Motonobu*; Kawamura, Naritoshi*; et al.

Interactions (Internet), 245(1), p.31_1 - 31_6, 2024/12

Journal Articles

Development of a non-destructive depth-selective quantification method for sub-percent carbon contents in steel using negative muon lifetime analysis

Ninomiya, Kazuhiko*; Kubo, Kenya*; Inagaki, Makoto*; Yoshida, Go*; Chiu, I.-H. ; Kudo, Takuto*; Asari, Shunsuke*; Sentoku, Sawako*; Takeshita, Soshi*; Shimomura, Koichiro*; et al.

Scientific Reports (Internet), 14, p.1797_1 - 1797_8, 2024/01

 Times Cited Count:0 Percentile:0.08(Multidisciplinary Sciences)

The amount of C in steel, which is critical in determining its properties, is strongly influenced by steel production technology. We propose a novel method of quantifying the bulk C content in steel non-destructively using muons. This revolutionary method may be used not only in the quality control of steel in production, but also in analyzing precious steel archaeological artifacts. A negatively charged muon forms an atomic system owing to its negative charge, and is finally absorbed into the nucleus or decays to an electron. The lifetimes of muons differ significantly, depending on whether they are trapped by Fe or C atoms, and identifying the elemental content at the muon stoppage position is possible via muon lifetime measurements. The relationship between the muon capture probabilities of C/Fe and the elemental content of C exhibits a good linearity, and the C content in the steel may be quantitatively determined via muon lifetime measurements. Furthermore, by controlling the incident energies of the muons, they may be stopped in each layer of a stacked sample consisting of three types of steel plates with thicknesses of 0.5 mm, and we successfully determined the C contents in the range 0.20 - 1.03 wt% depth-selectively, without sample destruction.

Journal Articles

Understanding muon diffusion in perovskite oxides below room temperature based on harmonic transition state theory

Ito, Takashi; Higemoto, Wataru; Shimomura, Koichiro*

Physical Review B, 108(22), p.224301_1 - 224301_11, 2023/12

 Times Cited Count:1 Percentile:0(Materials Science, Multidisciplinary)

Journal Articles

Consideration of high intensity single bunch acceleration in J-PARC RCS

Tamura, Fumihiko; Okita, Hidefumi; Hotchi, Hideaki*; Saha, P. K.; Meigo, Shinichiro; Yoshii, Masahito*; Omori, Chihiro*; Yamamoto, Masanobu; Seiya, Kiyomi*; Sugiyama, Yasuyuki*; et al.

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.64 - 68, 2023/11

The J-PARC 3GeV synchrotron (RCS) provides high intensity proton beams to the Materials and Life Science Experimental Facility (MLF) and the Main Ring (MR). The harmonic number (h) of the RCS is 2 and the RCS normally accelerates two bunches. For some experiments at the MLF, a single bunch is preferred. In this case, one of the rf bucket is filled with protons and the other is empty. Therefore the beam intensity is halved. If the RCS can accelerate with h=1, the intensity per bunch can be doubled, enabling to provide single bunch beams to the MLF with the maximum intensity. This possibly increases the MR beam power by injecting high intensity single bunches eight times. In this presentation, we report mainly on the consideration of h=1 acceleration in the RCS by longitudinal simulations.

Journal Articles

Pd nanoparticles on the outer surface of microporous aluminosilicates for the direct alkylation of benzenes using alkanes

Misaki, Satoshi*; Miwa, Hiroko*; Ito, Takashi; Yoshida, Takefumi*; Hasegawa, Shingo*; Nakamura, Yukina*; Tokutake, Shunta*; Takabatake, Moe*; Shimomura, Koichiro*; Chun, W.-J.*; et al.

ACS Catalysis, 13(18), p.12281 - 12287, 2023/09

 Times Cited Count:2 Percentile:39.99(Chemistry, Physical)

Journal Articles

Identification of hydrogen trapping in aluminum alloys $$via$$ muon spin relaxation method and first-principles calculations

Tsuru, Tomohito; Nishimura, Katsuhiko*; Matsuda, Kenji*; Nunomura, Norio*; Namiki, Takahiro*; Lee, S.*; Higemoto, Wataru; Matsuzaki, Teiichiro*; Yamaguchi, Masatake; Ebihara, Kenichi; et al.

Metallurgical and Materials Transactions A, 54(6), p.2374 - 2383, 2023/06

 Times Cited Count:1 Percentile:0(Materials Science, Multidisciplinary)

Although hydrogen embrittlement susceptibility of high-strength Al alloys is recognized as a critical issue in the practical use of Al alloys, identifying the hydrogen trapping or distribution has been challenging. In the present study, an effective approach based on experiment and simulation is proposed to explore the potential trap sites in Al alloys. Zero-field muon spin relaxation experiments were carried out for Al-0.5%Mg, Al-0.2%Cu, Al-0.15%Ti, Al-0.011%Ti, Al-0.28%V, and Al-0.015%V (at.%) in the temperature range from 5 to 300 K. The temperature variations of the dipole field widths have revealed three peaks for Al-0.5%Mg, four peaks for Al-0.2%Cu, three peaks for Al-0.011%Ti and Al-0.015%V. Atomic configurations of the muon trapping sites corresponding to the observed $$Delta$$ peaks are well assigned using the first-principles calculations for the trap energies of hydrogen around a solute and solute-vacancy pair. The extracted linear relationship between the muon $$Delta$$ peak temperature and the trap energy enables us to explore the potential alloying elements and their complex that have strong binding energies with hydrogen in Al alloys.

Journal Articles

Development of nondestructive elemental analysis system for Hayabusa2 samples using muonic X-rays

Osawa, Takahito; Nagasawa, Shunsaku*; Ninomiya, Kazuhiko*; Takahashi, Tadayuki*; Nakamura, Tomoki*; Wada, Taiga*; Taniguchi, Akihiro*; Umegaki, Izumi*; Kubo, Kenya*; Terada, Kentaro*; et al.

ACS Earth and Space Chemistry (Internet), 7(4), p.699 - 711, 2023/04

 Times Cited Count:4 Percentile:92.07(Chemistry, Multidisciplinary)

The concentrations of carbon and other major elements in asteroid samples provide very important information on the birth of life on the Earth and the solar-system evolution. Elemental analysis using muonic X-rays is one of the best analytical methods to determine the elemental composition of solid materials, and notably, is the only method to determine the concentration of light elements in bulk samples in a non-destructive manner. We developed a new analysis system using muonic X-rays to measure the concentrations of carbon and other major elements in precious and expectedly tiny samples recovered from the asteroid Ryugu by spacecraft Hayabusa2. Here we report the development process of the system in 4 stages and their system configurations, The analysis system is composed of a stainless-steel analysis chamber, an acrylic glove box for manipulating asteroid samples in a clean environment, and Ge semiconductor detectors arranged to surround the analysis chamber. The performance of the analysis system, including the background level, which is crucial for the measurement, was greatly improved from the first stage to the later ones. Our feasibility study showed that the latest model of our muonic X-ray analysis system is capable of determining the carbon concentration in Hayabusa2's sample model with an uncertainty of less than 10 percent in a 6-day measurement.

Journal Articles

Short-range spin order in paramagnetic AgCrSe$$_{2}$$

Nakamura, Jumpei*; Kawakita, Yukinobu; Okabe, Hirotaka*; Li, B.*; Shimomura, Koichiro*; Suemasu, Takashi*

Journal of Physics and Chemistry of Solids, 175, p.111199_1 - 111199_8, 2023/04

 Times Cited Count:1 Percentile:14.38(Chemistry, Multidisciplinary)

Journal Articles

Muon spin rotation, relaxation, and resonance ($$mu$$SR) methods

Ito, Takashi; Shimomura, Koichiro*

Hydrogenomics; The Science of Fully Utilizing Hydrogen (Internet), p.43 - 49, 2023/03

Journal Articles

Present status of J-PARC MUSE

Shimomura, Koichiro*; Koda, Akihiro*; Pant, A. D.*; Natori, Hiroaki*; Fujimori, Hiroshi*; Umegaki, Izumi*; Nakamura, Jumpei*; Tampo, Motonobu*; Kawamura, Naritoshi*; Teshima, Natsuki*; et al.

Journal of Physics; Conference Series, 2462, p.012033_1 - 012033_5, 2023/03

 Times Cited Count:0 Percentile:0.21(Physics, Applied)

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron, 2

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:5 Percentile:87.42(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Hydrogen impurities in p-type semiconductors, GeS and GeTe

Nakamura, Jumpei*; Kawakita, Yukinobu; Shimomura, Koichiro*; Suemasu, Takashi*

Journal of Applied Physics, 130(19), p.195701_1 - 195701_7, 2021/11

 Times Cited Count:2 Percentile:7.45(Physics, Applied)

Journal Articles

Design for detecting recycling muon after muon-catalyzed fusion reaction in solid hydrogen isotope target

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09

 Times Cited Count:3 Percentile:44.61(Nuclear Science & Technology)

A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 $$mu$$s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion ($$mu$$CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after $$mu$$CF reaction.

Journal Articles

Time evolution calculation of muon catalysed fusion; Emission of recycling muons from a two-layer hydrogen film

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08

 Times Cited Count:3 Percentile:44.61(Nuclear Science & Technology)

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by $$mu$$ and form a muonic hydrogen molecular ion, dt$$mu$$. Due to the short inter-nuclear distance of dt$$mu$$, the nuclear fusion, d +t$$rightarrow alpha$$ + n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion ($$mu$$CF). Recently, the interest on $$mu$$CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of $$mu$$CF in a two-layered hydrogen isotope target.

Journal Articles

Dynamical response of transition-edge sensor microcalorimeters to a pulsed charged-particle beam

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I.-H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

IEEE Transactions on Applied Superconductivity, 31(5), p.2101704_1 - 2101704_4, 2021/08

 Times Cited Count:1 Percentile:10.62(Engineering, Electrical & Electronic)

A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.

Journal Articles

Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms

Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.

Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08

 Times Cited Count:13 Percentile:84.11(Optics)

Journal Articles

Deexcitation dynamics of muonic atoms revealed by high-precision spectroscopy of electronic $$K$$ X rays

Okumura, Takuma*; Azuma, Toshiyuki*; Bennet, D. A.*; Caradonna, P.*; Chiu, I. H.*; Doriese, W. B.*; Durkin, M. S.*; Fowler, J. W.*; Gard, J. D.*; Hashimoto, Tadashi; et al.

Physical Review Letters, 127(5), p.053001_1 - 053001_7, 2021/07

 Times Cited Count:15 Percentile:80.44(Physics, Multidisciplinary)

We observed electronic $$K$$X rays emitted from muonic iron atoms using a superconducting transition-edge-type sensor microcalorimeter. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic $$K$$$$alpha$$ and $$K$$$$beta$$ X rays together with the hypersatellite $$K$$$$alpha$$ X rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the $$L$$-shell electrons, accompanied by electron side-feeding. Assisted by a simulation, this data clearly reveals the electronic $$K$$- and $$L$$-shell hole production and their temporal evolution during the muon cascade process.

Journal Articles

Development of negative muonium ion source for muon acceleration

Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.

Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03

 Times Cited Count:1 Percentile:18.12(Physics, Nuclear)

A negative muonium ion (Mu$$^{-}$$) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu$$^{-}$$ ions was conducted to evaluate the performance of the Mu$$^{-}$$ ion source. The measured event rate of Mu$$^{-}$$ ions was $$(1.7 pm 0.3) times 10^{-3}$$ Mu$$^{-}$$/s when the event rate of the incident muon beam was $$1.3times10^{6}$$/s. The formation probability, defined as the ratio of the Mu$$^{-}$$ ions to the incident muons on the Al target, was $$(1.1 pm 0.2(textrm{stat.})^{-0.0}_{+0.1}(textrm{syst.})) times10^{-6}$$. This Mu$$^{-}$$ ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.

200 (Records 1-20 displayed on this page)