Refine your search:     
Report No.
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of remote pipe welding tool for divertor cassettes in JT-60SA

Hayashi, Takao; Sakurai, Shinji; Sakasai, Akira; Shibanuma, Kiyoshi; Kono, Wataru*; Onawa, Toshio*; Matsukage, Takeshi*

Fusion Engineering and Design, 101, p.180 - 185, 2015/12

 Times Cited Count:1 Percentile:12.03(Nuclear Science & Technology)

Remote pipe welding tool accessing from inside pipe has been newly developed for JT-60SA. Remote handling (RH) system is necessary for the maintenance and repair of in-vessel components such as lower divertor cassettes in JT-60SA. Cooling pipes, which connects between the divertor cassette and the vacuum vessel with bellows are required to be cut and welded in the vacuum vessel by RH system. The available space for RH system is very limited inside the vacuum vessel, especially around the divertor cassettes. Thus, the cooling pipes are required to be cut and weld from the inside in the vacuum vessel. The inner diameter, thickness and material of the cooling pipe are 54.2 mm, 2.8 mm and SUS316L, respectively. An upper pipe connected to the divertor cassette has a jut on the edge to fill the gap between pipes. Owing to the jut and two-times welding, the welding tool achieved the maximum allowable gap of 0.7 mm.

Journal Articles

Welding technology R&D on port joint of JT-60SA vacuum vessel

Shibama, Yusuke; Masaki, Kei; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira; Onawa, Toshio*; Araki, Takao*; Asano, Shiro*

Fusion Engineering and Design, 88(9-10), p.1916 - 1919, 2013/10

 Times Cited Count:2 Percentile:21.27(Nuclear Science & Technology)

This presentation focuses on the welding technology R&D between the JT-60SA vacuum vessel and the ports. The vacuum vessel is designed to allow port bore penetration to access the vessel inside for plasma diagnostics, and so on. There are various types of 73 ports and these are categorized by their locations; the upper/lower vertical, the upper/lower oblique, and the horizontal. Ports are onsite-welded onto the VV port stub after the assembly of the VV. This assembly sequence involves the out-vessel components such as VV thermal shield and toroidal field magnets, so that these ports welding are accessed from the inside of the vessel and limited by the internal port wall. The one of the most difficult ports are the upper vertical port with corner radius of 50 mm under narrow space, and it is necessary to clarify mobility of the weld torch head. The port weldability is discussed with the mock-up trial, which consists of the partial test pieces of the product size. The TIG welding manipulator, optimized for this R&D, is prepared by its operational simulation and examined not to interfere with the internal port wall.

Journal Articles

Fundamental welding R&D results for manufacturing vacuum vessel of JT-60SA

Asano, Shiro*; Okuyama, Toshihisa*; Onawa, Toshio*; Yanagi, Yutaka*; Ejiri, Mitsuru*; Kanahara, Toshio*; Ichihashi, Koji*; Kikuchi, Atsushi*; Mizumaki, Shoichi*; Masaki, Kei; et al.

Fusion Engineering and Design, 86(9-11), p.1816 - 1820, 2011/10

 Times Cited Count:11 Percentile:69.09(Nuclear Science & Technology)

The real vacuum vessel (VV) manufacturing of JT-60SA has started since Nov. 2009 at Toshiba. Prior to starting manufacturing, fundamental welding R&Ds had been performed by three stages. In the first stage, primary tests for screening welding method were performed. In the second stage, the trial welding for 1m-long straight and curved double shell samples were conducted. The dependences of welding quality and distortion on the welding conditions, such as arc voltage and current, setting accuracy, welding sequence, the shape of grooves, etc. were measured. In addition, welding condition with low heat input was explored. In the last stage, fabrication sequence was confirmed and established by the trial manufacturing of the 20$$^{circ}$$ upper half mock-up. This poster presents the R&D results obtained in the first and second stages.

Oral presentation

A Study of laser welding application for pipe joint of nuclear reactor vessel internals

Onawa, Toshio*; Kono, Wataru*; Matsumoto, Yasuhiro*; Sakurai, Shinji; Hayashi, Takao

no journal, , 

no abstracts in English

4 (Records 1-4 displayed on this page)
  • 1