Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 50

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2018

Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Maehara, Yushi; Narita, Ryosuke; et al.

JAEA-Review 2019-048, 165 Pages, 2020/03

JAEA-Review-2019-048.pdf:2.69MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2018 to March 2019. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.

JAEA Reports

Synthesis report on the R&D for the Horonobe Underground Research Laboratory; Project carried out during fiscal years 2015-2019

Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.

JAEA-Research 2019-013, 276 Pages, 2020/03

JAEA-Research-2019-013.pdf:18.72MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Installation of engineered barrier system and backfilling the test niche at the 350m gallery

Nakayama, Masashi; Ono, Hirokazu

JAEA-Research 2019-007, 132 Pages, 2019/12

JAEA-Research-2019-007.pdf:11.29MB
JAEA-Research-2019-007-appendix(CD-ROM).zip:39.18MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies". The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at GL-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the EBS experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report shows following works had carried out at the GL-350 m gallery. Excavation of a test niche and a test pit, Setting buffer material blocks and a simulated overpack into the test pit, Backfilling the niche by compaction backfilling material and setting backfilling material blocks, Casting concrete type plug and contact grouting, Consolidate measurement system and start measuring.

Journal Articles

Research on hydrogen safety technology utilizing the automotive catalyst

Ono, Hitomi*; Takenaka, Keisuke*; Kita, Tomoaki*; Taniguchi, Masashi*; Matsumura, Daiju; Nishihata, Yasuo; Hino, Ryutaro; Reinecke, E.-A.*; Takase, Kazuyuki*; Tanaka, Hirohisa*

E-Journal of Advanced Maintenance (Internet), 11(1), p.40 - 45, 2019/05

JAEA Reports

Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory (until March, 2018)

Nakayama, Masashi; Ono, Hirokazu; Nakayama, Mariko*; Kobayashi, Masato*

JAEA-Data/Code 2019-003, 57 Pages, 2019/03

JAEA-Data-Code-2019-003.pdf:18.12MB
JAEA-Data-Code-2019-003-appendix(CD-ROM).zip:99.74MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, Geoscientific Research and Research and Development on Geological Disposal Technologies, and proceeds in 3 overlapping phases, Phase I: Surface-based investigations, Phase II: Investigations during tunnel excavation and Phase III: Investigations in the URL, over a period of around 20 years. Phase III investigation was started in 2010 FY. The in-situ experiment for performance confirmation of engineered barrier system had been prepared from 2013 to 2014 FY at GL-350 m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with THMC coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the experiment from December, 2014 to March, 2018. The summarized data of the EBS experiment will be published periodically.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2017

Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Hokama, Tomonori; Nishimura, Tomohiro; Matsubara, Natsumi; et al.

JAEA-Review 2018-025, 171 Pages, 2019/02

JAEA-Review-2018-025.pdf:3.81MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.

Journal Articles

A Study of methods to prevent piping and erosion in buffer materials intended for a vertical deposition hole at the Horonobe Underground Research Laboratory

Jo, Mayumi*; Ono, Makoto*; Nakayama, Masashi; Asano, Hidekazu*; Ishii, Tomoko*

Geological Society Special Publications, 482, 16 Pages, 2018/09

 Times Cited Count:1 Percentile:58.8

Journal Articles

Determination of fusion barrier distributions from quasielastic scattering cross sections towards superheavy nuclei synthesis

Tanaka, Taiki*; Narikiyo, Yoshihiro*; Morita, Kosuke*; Fujita, Kunihiro*; Kaji, Daiya*; Morimoto, Koji*; Yamaki, Sayaka*; Wakabayashi, Yasuo*; Tanaka, Kengo*; Takeyama, Mirei*; et al.

Journal of the Physical Society of Japan, 87(1), p.014201_1 - 014201_9, 2018/01

 Times Cited Count:7 Percentile:26.78(Physics, Multidisciplinary)

Excitation functions of quasielastic scattering cross sections for the $$^{48}$$Ca + $$^{208}$$Pb, $$^{50}$$Ti + $$^{208}$$Pb, and $$^{48}$$Ca + $$^{248}$$Cm reactions were successfully measured by using the gas-filled recoil-ion separator GARIS. Fusion barrier distributions were extracted from these data, and compared with the coupled-channels calculations. It was found that the peak energies of the barrier distributions for the $$^{48}$$Ca + $$^{208}$$Pb and $$^{50}$$Ti + $$^{208}$$Pb systems coincide with those of the 2n evaporation channel cross sections for the systems, while that of the $$^{48}$$Ca + $$^{248}$$Cm is located slightly below the 4n evaporation ones. This results provide us helpful information to predict the optimum beam energy to synthesize superheavy nuclei.

Journal Articles

Local structure and distribution of remaining elements inside extraction chromatography adsorbents

Watanabe, So; Sano, Yuichi; Shiwaku, Hideaki; Yaita, Tsuyoshi; Ono, Shimpei*; Arai, Tsuyoshi*; Matsuura, Haruaki*; Koka, Masashi*; Sato, Takahiro*

Nuclear Instruments and Methods in Physics Research B, 404, p.202 - 206, 2017/08

 Times Cited Count:3 Percentile:50.46(Instruments & Instrumentation)

JAEA Reports

Horonobe Underground Research Laboratory Project; Synthesis of Phase II (Construction Phase) investigations to a depth of 350m

Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo*; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; et al.

JAEA-Research 2016-025, 313 Pages, 2017/03

JAEA-Research-2016-025.pdf:45.1MB

The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350m. Integration of work from different disciplines into a "geosynthesis" ensures that the Phase II goals have been successfully achieved and identifies key issues that need to made to be addressed in the Phase II investigations Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a "knowledge base" that will reinforce the technical basis for both implementation and the formulation of safety regulations.

JAEA Reports

Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory (FY2015)

Nakayama, Masashi; Ono, Hirokazu; Nakayama, Mariko*; Kobayashi, Masato*

JAEA-Data/Code 2016-005, 55 Pages, 2016/07

JAEA-Data-Code-2016-005.pdf:11.32MB
JAEA-Data-Code-2016-005-appendix(CD-ROM).zip:32.68MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in three overlapping phases, "Phase I: Surface-based investigations", "Phase II: Investigations during tunnel excavation" and "Phase III: Investigations in the underground facilities". Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at GL-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016.

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Examination of backfill material using muck from URL construction

Nakayama, Masashi; Ono, Hirokazu; Tanai, Kenji; Sugita, Yutaka; Fujita, Tomoo

JAEA-Research 2016-002, 280 Pages, 2016/06

JAEA-Research-2016-002.pdf:16.21MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in three overlapping phases, "Phase I: Surface-based investigations", "Phase II: Investigations during tunnel excavation" and "Phase III: Investigations in the underground facilities", over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery (Niche No.4), and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. In EBS experiment, the backfill material using mixture of bentonite and muck from Horonobe URL construction was used for backfilling a part of Niche No.4. This report shows the results of properties of the backfill material, confirmation test of compaction method and making backfill material block, and so on. From these results, it was confirmed that the backfill material would satisfy target value of the permeability and the swelling pressure.

JAEA Reports

Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory (FY2014)

Nakayama, Masashi; Ono, Hirokazu; Nakayama, Mariko*; Kobayashi, Masato*

JAEA-Data/Code 2015-013, 53 Pages, 2015/09

JAEA-Data-Code-2015-013.pdf:9.78MB
JAEA-Data-Code-2015-013(errata).pdf:0.37MB
JAEA-Data-Code-2015-013-appendix(CD-ROM).zip:5.76MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in three overlapping phases, "Phase I: Surface-based investigations", "Phase II: Investigations during tunnel excavation" and "Phase III: Investigations in the underground facilities", over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment. The period of data acquisition is from December, 2014 to March, 2015. It will be periodically published summarized data of EBS experiment.

Journal Articles

Science from the initial operation of HRC

Ito, Shinichi*; Yokoo, Tetsuya*; Masuda, Takatsugu*; Yoshizawa, Hideki*; Soda, Minoru*; Ikeda, Yoichi*; Ibuka, Soshi*; Kawana, Daichi*; Sato, Taku*; Nambu, Yusuke*; et al.

JPS Conference Proceedings (Internet), 8, p.034001_1 - 034001_6, 2015/09

Journal Articles

In-situ monitoring of ion-beam luminescence of Si-O-C(-H) ceramics under proton-beam irradiation

Narisawa, Masaki*; Koka, Masashi; Takeyama, Akinori; Sugimoto, Masaki; Idesaki, Akira; Sato, Takahiro; Hokazono, Hiroki*; Kawai, Taketoshi*; Iwase, Akihiro*

Journal of the Ceramic Society of Japan, 123(9), p.805 - 808, 2015/09

Journal Articles

Dipole tracer migration and diffusion tests in fractured sedimentary rock at Horonobe URL

Tanaka, Shingo*; Yokota, Hideharu; Ono, Hirokazu; Nakayama, Masashi; Fujita, Tomoo; Takiya, Hiroaki*; Watanabe, Naoko*; Kozaki, Tamotsu*

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 6 Pages, 2015/05

JAEA Reports

Research for spectroscopy of fuel debris using superconducting phase transition edge sensor microcalorimeter; Measurement experiment and simulated calculation (Joint research)

Takasaki, Koji; Yasumune, Takashi; Onishi, Takashi; Nakamura, Keisuke; Ishimi, Akihiro; Ito, Chikara; Osaka, Masahiko; Ono, Masashi*; Hatakeyama, Shuichi*; Takahashi, Hiroyuki*; et al.

JAEA-Research 2013-043, 33 Pages, 2014/01

JAEA-Research-2013-043.pdf:13.81MB

In the Fukushima Daiichi Nuclear Power Plant, it is assumed that the core fuels melted partially or wholly, and the normal technique of accounting for a fuel assembly is not applicable. Therefore, it is necessary to develop the transparent and rational technique of accounting in the process of collection and storage of fuel debris. In this research, an application of the superconducting phase Transition Edge Sensor microcalorimeter (TES microcalorimeter) is studied for the accounting of nuclear materials in the fuel debris. It is expected that the detailed information of nuclear materials and fission products in fuel debris is obtained by using a high-resolution characteristic of TES microcalorimeter. In this report, the principle of TES microcalorimeter, the measurement experiment using TES in JAEA, and the simulated calculation using the EGS5 code system are summarized.

Journal Articles

Switching of intra-orbital spin excitations in electron-doped iron pnictide superconductors

Iimura, Soshi*; Matsuishi, Satoru*; Miyakawa, Masashi*; Taniguchi, Takashi*; Suzuki, Katsuhiro*; Usui, Hidetomo*; Kuroki, Kazuhiko*; Kajimoto, Ryoichi; Nakamura, Mitsutaka; Inamura, Yasuhiro; et al.

Physical Review B, 88(6), p.060501_1 - 060501_5, 2013/08

 Times Cited Count:24 Percentile:23.21(Materials Science, Multidisciplinary)

JAEA Reports

Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi Nuclear Power Plant; Interim report (Ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout)

Furuta, Sadaaki; Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Imaizumi, Kenji; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Mizutani, Tomoko; Morisawa, Masato; et al.

JAEA-Review 2011-035, 89 Pages, 2011/08

JAEA-Review-2011-035.pdf:2.97MB

As a correspondence to the accident at the Fukushima Daiichi Nuclear Power Plant, the environmental radiation monitoring was performed at the Nuclear Fuel Cycle Engineering Laboratories, JAEA. This report presented the measurement results of ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in fallout and meteorological observation result until May 31, 2011. The ambient radiation dose rate increased, with the peak dose rate of several thousand nGy/h at 7 o'clock in March 15, at 5 o'clock in March 16, and at 4 o'clock in March 21. The variation on the radioactivity concentration in the air and in fallout showed the almost same tendency as that of the dose rate. The concentration ratio of I-131/Cs-137 in the air increased to about 100. The dose was estimated resulting from internal exposure due to inhalation.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2009

Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2011-004, 161 Pages, 2011/03

JAEA-Review-2011-004.pdf:4.09MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2009 to March 2010. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes.

50 (Records 1-20 displayed on this page)