Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 317

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Assessment of the probability of aircraft crashing for HTTR

Ono, Masato; Hanawa, Yoshio; Sonobe, Hiroshi; Nishimura, Arashi; Sugaya, Naoto; Iigaki, Kazuhiko

JAEA-Technology 2020-010, 14 Pages, 2020/09

JAEA-Technology-2020-010.pdf:1.74MB

In response to new standard for regulating research and test reactor which is enforced December 18, 2013, it was carried out assessment of the probability of aircraft crashing for HTTR. According to assessment method provided in the Assessment Criteria of the Probability of Aircraft Crashing on Commercial Power Reactor Facilities, assessment was conducted targeting reactor building, spent fuel storage building and cooling tower. As a result, it was confirmed that the probability was 5.98$$times$$10$$^{-8}$$, which is lower than the assessment criteria 10$$^{-7}$$.

Journal Articles

Evaluation of impact with high temperature engineering test reactor using realistic model of stack and reactor building

Ono, Masato; Fujiwara, Yusuke; Matsumoto, Tetsuro*; Iigaki, Kazuhiko

Nippon Genshiryoku Gakkai Wabun Rombunshi, 19(2), p.110 - 120, 2020/06

Integrity confirmation for buildings against collisions of projectiles has been conducted to evaluate collisions between a projectile with simple shape and a wall using empirical formulas. It is a matter of fact, there is a possibility that structures with complex shape such as stack may collide with a reactor building. However, there were not so many studies of collisions between structures with complex shape and buildings in the literature. Impact evaluation was carried out using reactor building and stack with real shape and adequate physical property. It was found that ceiling of reactor building was not damaged by the collision, confirming that there was no effect inside of reactor building.

Journal Articles

Repeatability and reproducibility of measurements of low dissolved radiocesium concentrations in freshwater using different pre-concentration methods

Kurihara, Momo*; Yasutaka, Tetsuo*; Aono, Tatsuo*; Ashikawa, Nobuo*; Ebina, Hiroyuki*; Iijima, Takeshi*; Ishimaru, Kei*; Kanai, Ramon*; Karube, Jinichi*; Konnai, Yae*; et al.

Journal of Radioanalytical and Nuclear Chemistry, 322(2), p.477 - 485, 2019/11

 Times Cited Count:0 Percentile:100(Chemistry, Analytical)

We assessed the repeatability and reproducibility of methods for determining low dissolved radiocesium concentrations in freshwater in Fukushima. Twenty-one laboratories pre-concentrated three of 10 L samples by five different pre-concentration methods (prussian-blue-impregnated filter cartridges, coprecipitation with ammonium phosphomolybdate, evaporation, solid-phase extraction disks, and ion-exchange resin columns), and activity of radiocesium was measured. The z-scores for all of the $$^{137}$$Cs results were within $$pm$$2, indicating that the methods were accurate. The relative standard deviations (RSDs) indicating the variability in the results from different laboratories were larger than the RSDs indicating the variability in the results from each separate laboratory.

JAEA Reports

Estimation of exchange time for neutron startup sources of HTTR

Ono, Masato; Kozawa, Takayuki; Fujimoto, Nozomu*

JAEA-Technology 2019-012, 15 Pages, 2019/09

JAEA-Technology-2019-012.pdf:2.83MB

The High Temperature Engineering Test Reactor has a neutron source of $$^{252}$$Cf to start up the reactor and to confirm count rates of wide range monitors. The half-life of $$^{252}$$Cf is short, about 2.6 years, so it is necessary to replace at an appropriate time. In order to estimate the period to replace, it is necessary to consider not only the half-life but also the fluctuation of the count rate of the wide range monitor to prevent alarm. For that reason, the method has been derived to predict a minimum count rate from relationship between the count rate and the standard deviation of the count rate of the wide range monitors. As a result of predicting the count rate using this method, it was found that the minimum count rate reaches to 3.0cps in 2022 and 1.5 cps in 2024. Therefore, it is necessary to exchange $$^{252}$$Cf by 2024.

Journal Articles

Research and development on membrane IS process for hydrogen production using solar heat

Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.

International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07

 Times Cited Count:6 Percentile:29.77(Chemistry, Physical)

Journal Articles

Quantum dynamics of hydrogen in the iron-based superconductor LaFeAsO$$_{0.9}$$D$$_{0.1}$$ measured with inelastic neutron spectroscopy

Yamaura, Junichi*; Hiraka, Haruhiro*; Iimura, Soshi*; Muraba, Yoshinori*; Bang, J.*; Ikeuchi, Kazuhiko*; Nakamura, Mitsutaka; Inamura, Yasuhiro; Honda, Takashi*; Hiraishi, Masatoshi*; et al.

Physical Review B, 99(22), p.220505_1 - 220505_6, 2019/06

 Times Cited Count:1 Percentile:74.19(Materials Science, Multidisciplinary)

Inelastic neutron scattering was performed for an iron-based superconductor, where most of D (deuterium) replaces oxygen, while a tiny amount goes into interstitial sites. By first-principle calculation, we characterize the interstitial sites for D (and for H slightly mixed) with four equivalent potential minima. Below the superconducting transition temperature Tc = 26 K, new excitations emerge in the range 5-15 meV, while they are absent in the reference system LaFeAsO$$_{0.9}$$F$$_{0.1}$$. The strong excitations at 14.5 meV and 11.1 meV broaden rapidly around 15 K and 20 K, respectively, where each energy becomes comparable to twice of the superconducting gap. The strong excitations are ascribed to a quantum rattling, or a band motion of hydrogen, which arises only if the number of potential minima is larger than two.

Journal Articles

Crystal structure change of katoite, Ca$$_{3}$$Al$$_{2}$$(O$$_{4}$$D$$_{4}$$)$$_{3}$$, with temperature at high pressure

Kyono, Atsushi*; Kato, Masato*; Sano, Asami; Machida, Shinichi*; Hattori, Takanori

Physics and Chemistry of Minerals, 46(5), p.459 - 469, 2019/05

 Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)

To reveal the decomposition mechanism with temperature under high-pressure, crystal structure of a hydrogrossular, katoite Ca$$_{3}$$Al$$_{2}$$(O$$_{4}$$D$$_{4}$$)$$_{3}$$ has been studied by in-situ neutron diffraction at 8 GPa. Although unusual expansion behavior was discerned at 200-400$$^circ$$C, the unit cell was continuously expanded up to 850$$^circ$$C. At 900$$^circ$$C, katoite was decomposed, indicating that pressure strongly increases dehydration temperature from 300$$^circ$$C to 900$$^circ$$C. On release of pressure, the katoite reappear together with corundum and portlandite. At 8 GPa, CaO$$_{8}$$ and AlO$$_{6}$$ polyhedra expand with temperature up to 850$$^circ$$C by about 8% and 13%, respectively. On the other hand, tetrahedral interstices are isotopically squeezed by about 10%: due to the expansion of above polyhedra. The neighboring D-D distance remains almost unchanged in this temperature range, while the O-D bond distance shrinks drastically just before decomposition. This finding suggests that the shortening of O-D distance caused by the D-D repulsion destabilizes the O-D bond, which induces the thermal decomposition of katoite.

JAEA Reports

Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory (until March, 2018)

Nakayama, Masashi; Ono, Hirokazu; Nakayama, Mariko*; Kobayashi, Masato*

JAEA-Data/Code 2019-003, 57 Pages, 2019/03

JAEA-Data-Code-2019-003.pdf:18.12MB
JAEA-Data-Code-2019-003-appendix(CD-ROM).zip:99.74MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, Geoscientific Research and Research and Development on Geological Disposal Technologies, and proceeds in 3 overlapping phases, Phase I: Surface-based investigations, Phase II: Investigations during tunnel excavation and Phase III: Investigations in the URL, over a period of around 20 years. Phase III investigation was started in 2010 FY. The in-situ experiment for performance confirmation of engineered barrier system had been prepared from 2013 to 2014 FY at GL-350 m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with THMC coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the experiment from December, 2014 to March, 2018. The summarized data of the EBS experiment will be published periodically.

Journal Articles

Lessons learned from the risk communication with the public after the Fukushima Daiichi Nuclear Power Plant accident

Kono, Takahiko; Tanaka, Masato*; Sakoda, Akihiro; Tanaka, Hitomi*; Takeuchi, Masato*; Kataoka, Noriaki*

Proceedings of World Engineers Convention Australia 2019 (WEC 2019) (Internet), p.486 - 496, 2019/00

Journal Articles

Study on source of radioactive material in primary coolant of HTTR

Ishii, Toshiaki; Shimazaki, Yosuke; Ono, Masato; Fujiwara, Yusuke; Ishitsuka, Etsuo; Hamamoto, Shimpei

Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 3 Pages, 2018/10

Journal Articles

Comprehensive seismic evaluation of HTTR against the 2011 off the Pacific coast of Tohoku Earthquake

Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04

On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.

Journal Articles

3D crash calculation of stack and reactor building of HTTR

Ono, Masato; Fujiwara, Yusuke; Iigaki, Kazuhiko; Matsumoto, Tetsuro*; Taki, Nobuhiro*

Proceedings of European Research Reactor Conference 2018 (RRFM 2018) (Internet), 7 Pages, 2018/03

Integrity confirmation of building against the crash of flying object due to the tornado was carried out by formulas which calculate by simple shape. However, there was no study on crash calculation using complex shape such as the stack and reactor building. In this study, the crash calculation was carried out by a real shape model of High Temperature Engineering Test Reactor (HTTR) stack and reactor building using three-dimensional analysis code (VPS: Virtual Performance Solution). In the calculation, parameters of VPS were conservatively set in accordance with the formulas, which are formulated based on results of crash experiments and approved by the Nuclear Regulatory Authority. The crash calculation of stack and reactor building of HTTR was carried out using VPS. As a result, the integrity of building against the crash by stack was confirmed.

Journal Articles

Determination of fusion barrier distributions from quasielastic scattering cross sections towards superheavy nuclei synthesis

Tanaka, Taiki*; Narikiyo, Yoshihiro*; Morita, Kosuke*; Fujita, Kunihiro*; Kaji, Daiya*; Morimoto, Koji*; Yamaki, Sayaka*; Wakabayashi, Yasuo*; Tanaka, Kengo*; Takeyama, Mirei*; et al.

Journal of the Physical Society of Japan, 87(1), p.014201_1 - 014201_9, 2018/01

 Times Cited Count:7 Percentile:29.57(Physics, Multidisciplinary)

Excitation functions of quasielastic scattering cross sections for the $$^{48}$$Ca + $$^{208}$$Pb, $$^{50}$$Ti + $$^{208}$$Pb, and $$^{48}$$Ca + $$^{248}$$Cm reactions were successfully measured by using the gas-filled recoil-ion separator GARIS. Fusion barrier distributions were extracted from these data, and compared with the coupled-channels calculations. It was found that the peak energies of the barrier distributions for the $$^{48}$$Ca + $$^{208}$$Pb and $$^{50}$$Ti + $$^{208}$$Pb systems coincide with those of the 2n evaporation channel cross sections for the systems, while that of the $$^{48}$$Ca + $$^{248}$$Cm is located slightly below the 4n evaporation ones. This results provide us helpful information to predict the optimum beam energy to synthesize superheavy nuclei.

Journal Articles

Loss of core cooling test with one cooling line inactive in Vessel Cooling System of High-Temperature Engineering Test Reactor

Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Takada, Shoji

Journal of Nuclear Engineering and Radiation Science, 3(4), p.041013_1 - 041013_8, 2017/10

In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1$$^{circ}$$C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15$$^{circ}$$C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.

Journal Articles

Measurement of temperature response of intermediate heat exchanger in heat application system abnormal simulating test using HTTR

Ono, Masato; Fujiwara, Yusuke; Honda, Yuki; Sato, Hiroyuki; Shimazaki, Yosuke; Tochio, Daisuke; Homma, Fumitaka; Sawahata, Hiroaki; Iigaki, Kazuhiko; Takada, Shoji

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 5 Pages, 2017/04

Japan Atomic Energy Agency (JAEA) has carried out research and developments towards nuclear heat utilization of High Temperature Gas-cooled Reactor (HTGR) using High Temperature Engineering Test Reactor (HTTR). The nuclear heat utilization systems connected to HTGR will be designed on the basis of non-nuclear-grade standards in terms of easier entry for the chemical plant companies and the construction economics of the systems. Therefore, it is necessary that the reactor operations continue even if abnormal events occur in the systems. Heat application system abnormal simulating test with HTTR was carried out in non-nuclear heating operation to focus on the thermal effect in order to obtain data of the transient temperature behavior of the metallic components in the Intermediate Heat Exchanger (IHX). The IHX is the key components to connect the HTTR with the heat application system. In the test, the coolant helium gas temperature was heated up to 120$$^{circ}$$C by the compression heat of the gas circulators in the HTTR under the ideal condition to focus on the heat transfer. The tests were conducted by decreasing the helium gas temperature stepwise by increasing the mass flow rate to the air cooler. The temperature responses of the IHX were investigated. For the components such as the heat transfer tubes and heat transfer enhancement plates of IHX, the temperature response was slower in the lower position in comparison with the higher position. The reason is considered that thermal load fluctuation is imposed in the secondary helium gas which flows from the top to the bottom in the heat transfer tubes of the IHX. The test data are useful to verify the numerical model of the safety evaluation code.

JAEA Reports

Stabilization of MOX dissolving solution at STACY

Kobayashi, Fuyumi; Sumiya, Masato; Kida, Takashi; Kokusen, Junya; Uchida, Shoji; Kaminaga, Jota; Oki, Keiichi; Fukaya, Hiroyuki; Sono, Hiroki

JAEA-Technology 2016-025, 42 Pages, 2016/11

JAEA-Technology-2016-025.pdf:17.88MB

A preliminary test on MOX fuel dissolution for the STACY critical experiments had been conducted in 2000 through 2003 at Nuclear Science Research Institute of JAEA. Accordingly, the uranyl / plutonium nitrate solution should be reconverted into oxide powder to store the fuel for a long period. For this storage, the moisture content in the oxide powder should be controlled from the viewpoint of criticality safety. The stabilization of uranium / plutonium solution was carried out under a precipitation process using ammonia or oxalic acid solution, and a calcination process using a sintering furnace. As a result of the stabilization operation, recovery rate was 95.6% for uranium and 95.0% for plutonium. Further, the recovered oxide powder was calcined again in nitrogen atmosphere and sealed immediately with a plastic bag to keep its moisture content low and to prevent from reabsorbing atmospheric moisture.

Journal Articles

Investigation of countermeasure against local temperature rise in vessel cooling system in loss of core cooling test without nuclear heating

Ono, Masato; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.044502_1 - 044502_4, 2016/10

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to verify safety evaluation codes to investigate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from gas circulators with stopping water flow in the VCS, the local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

JAEA Reports

Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory (FY2015)

Nakayama, Masashi; Ono, Hirokazu; Nakayama, Mariko*; Kobayashi, Masato*

JAEA-Data/Code 2016-005, 55 Pages, 2016/07

JAEA-Data-Code-2016-005.pdf:11.32MB
JAEA-Data-Code-2016-005-appendix(CD-ROM).zip:32.68MB

The Horonobe URL Project has being pursued by JAEA to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies", and proceeds in three overlapping phases, "Phase I: Surface-based investigations", "Phase II: Investigations during tunnel excavation" and "Phase III: Investigations in the underground facilities". Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at GL-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016.

Journal Articles

Confirmation of seismic integrity of HTTR against 2011 Great East Japan Earthquake

Ono, Masato; Iigaki, Kazuhiko; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Hamamoto, Shimpei; Nishihara, Tetsuo; Takada, Shoji; Sawa, Kazuhiro; et al.

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 12 Pages, 2016/06

On March 11th, 2011, the Great East Japan Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the HTTR had been stopped under the periodic inspection and maintenance of equipment and instrument. In the great earthquake, the maximum seismic acceleration observed at the HTTR exceeded the maximum value in seismic design. The visual inspection of HTTR facility was carried out for the seismic integrity conformation of HTTR. The seismic analysis was also carried out using the observed earthquake motion at HTTR site to confirm the integrity of HTTR. The concept of comprehensive integrity evaluation for the HTTR facility is divided into two parts. One is the inspection of equipment and instrument. The other is the seismic response analysis using the observed earthquake. For the basic inspections of equipment and instrument were performed for all them related to the operation of reactor. The integrity of the facilities is confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the result of inspection of equipment and instrument and seismic response analysis, it was judged that there was no problem to operate the reactor, because there was no damage and performance deterioration, which affects the reactor operation. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015.

Journal Articles

Loss of core cooling test without one cooling line in Vessel Cooling System (VCS) of High Temperature engineering Test Reactor (HTTR)

Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Hamamoto, Shimpei; Iigaki, Kazuhiko; Takada, Shoji

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06

In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1 degree C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15 degree C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.

317 (Records 1-20 displayed on this page)