Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsumura, Takeshi*; Tabata, Chihiro; Kaneko, Koji; Nakao, Hironori*; Kakihana, Masashi*; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*
Physical Review B, 109(17), p.174437_1 - 174437_8, 2024/05
Times Cited Count:1 Percentile:62.87(Materials Science, Multidisciplinary)Kaneko, Koji; Tabata, Chihiro; Hagihara, Masato; Yamauchi, Hiroki; Kubota, Masato; Osakabe, Toyotaka; Onuki, Yoshichika*
Journal of the Physical Society of Japan, 92(8), p.085001_1 - 085001_2, 2023/08
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Matsumura, Takeshi*; Tsukakoshi, Mitsuru*; Ueda, Yoshihisa*; Higa, Nonoka*; Nakao, Akiko*; Kaneko, Koji; Kakihana, Masashi*; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*
Journal of the Physical Society of Japan, 91(7), p.073703_1 - 073703_5, 2022/07
Times Cited Count:9 Percentile:75.00(Physics, Multidisciplinary)Takagi, Rina*; Matsuyama, Naofumi*; Ukleev, V.*; Yu, L.*; White, J. S.*; Francoual, S.*; Mardegan, J. R. L.*; Hayami, Satoru*; Saito, Hiraku*; Kaneko, Koji; et al.
Nature Communications (Internet), 13, p.1472_1 - 1472_7, 2022/03
Times Cited Count:88 Percentile:99.50(Multidisciplinary Sciences)Kaneko, Koji; Kawasaki, Takuro; Nakamura, Ai*; Munakata, Koji*; Nakao, Akiko*; Hanashima, Takayasu*; Kiyanagi, Ryoji; Ohara, Takashi; Hedo, Masato*; Nakama, Takao*; et al.
Journal of the Physical Society of Japan, 90(6), p.064704_1 - 064704_6, 2021/06
Times Cited Count:49 Percentile:95.33(Physics, Multidisciplinary)Kaneko, Koji; Kakihana, Masashi*; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*
Hamon, 30(3), p.160 - 165, 2020/08
no abstracts in English
Du, Y.*; Yoshida, Kenta*; Shimada, Yusuke*; Toyama, Takeshi*; Inoue, Koji*; Arakawa, Kazuto*; Suzudo, Tomoaki; Milan, K. J.*; Gerard, R.*; Onuki, Somei*; et al.
Materialia, 12, p.100778_1 - 100778_10, 2020/08
In order to ensure the integrity of the reactor pressure vessel in the long term, it is necessary to understand the effects of irradiation on the materials. In this study, irradiation-induced dislocation loops were observed in neutron-irradiated reactor pressure vessel specimens during annealing using our newly developed WB-STEM. It was confirmed that the proportion of loops increased with increasing annealing temperature. We also succeeded in observing the phenomenon that two
loops collide into a
loop. Moreover, a phenomenon in which dislocation loops decorate dislocations was also observed, and the mechanism was successfully explained by molecular dynamics simulation.
Kaneko, Koji; Kakihana, Masashi*; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*
Kotai Butsuri, 54(12), p.757 - 766, 2019/12
no abstracts in English
Tabata, Chihiro*; Matsumura, Takeshi*; Nakao, Hironori*; Michimura, Shinji*; Kakihana, Masashi*; Inami, Toshiya*; Kaneko, Koji; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*
Journal of the Physical Society of Japan, 88(9), p.093704_1 - 093704_5, 2019/09
Times Cited Count:39 Percentile:87.93(Physics, Multidisciplinary)Kaneko, Koji; Frontzek, M. D.*; Matsuda, Masaaki*; Nakao, Akiko*; Munakata, Koji*; Ohara, Takashi; Kakihana, Masashi*; Haga, Yoshinori; Hedo, Masato*; Nakama, Takao*; et al.
Journal of the Physical Society of Japan, 88, p.013702_1 - 013702_5, 2019/01
Times Cited Count:70 Percentile:94.80(Physics, Multidisciplinary)Takayasu, Kentaro; Onuki, Kenji*; Kawamoto, Koji*; Takayama, Yusuke; Mikake, Shinichiro; Sato, Toshinori; Onoe, Hironori; Takeuchi, Ryuji
JAEA-Technology 2017-011, 61 Pages, 2017/06
The Groundwater REcovery Experiment in Tunnel (GREET) was put into effect as development of drift backfilling technologies. This test was conducted by making the Closure Test Drift (CTD) recovered with water after carrying out a plug around 40m distance from northern edge face of horizontal tunnel of depth 500m, for the purpose of investigation of recovering process of rock mass and groundwater under the influence of excavation of tunnel. This report presents the efforts of backfilling investigation using bentonite composite soil and execution of backfilling into borehole pits excavated in the CTD which were carried out in fiscal 2014 as a part of GREET, and succeeding observation results inside pits from September 2014 to March 2016.
Kawasaki, Takuro; Kaneko, Koji; Nakamura, Ai*; Aso, Naofumi*; Hedo, Masato*; Nakama, Takao*; Ohara, Takashi; Kiyanagi, Ryoji; Oikawa, Kenichi; Tamura, Itaru; et al.
Journal of the Physical Society of Japan, 85(11), p.114711_1 - 114711_5, 2016/11
Times Cited Count:15 Percentile:64.38(Physics, Multidisciplinary)Yamaji, Tatsuya*; Koizumi, Yasuo; Yamazaki, Kohei*; Otake, Hiroyasu*; Hasegawa, Koji*; Onuki, Akira*; Kanamori, Daisuke*
Konsoryu Shimpojiumu 2015 Koen Rombunshu (USB Flash Drive), 2 Pages, 2015/08
Experiments of condensing counter-current two-phase flow in a vertical pipe were performed. This study was intended to examine water accumulation in the up-flow side of steam generator U-tubes of a PWR during the reflux cooling stage of a small break LOCA. It has been apprehended that the water accumulation may result in temporary core liquid level depression. The inner diameter and the length of a test flow channel used in the experiments were 18 mm and 4 m, respectively. The experiments were performed by using steam and water at 0.1 MPa. Two kinds of experiments were conducted; visualization experiments by using a transparent test section and quantitative water accumulation evaluation experiments by using a brass test section. Even if water on the inner surface of the test pipe could not flow downward at the lower portion of the test pipe, a part of water became to flow downward at the upper portion of the test pipe since steam velocity decreased because of condensation. Thus, two-phase mixture level was formed in the upper portion of the test pipe, which resulted in the water accumulation in the pipe. The model to predict the water accumulation was proposed. It predicted the water accumulation reasonably well.
Hasegawa, Takashi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Iwatsuki, Teruki; Sato, Toshinori
JAEA-Technology 2015-011, 135 Pages, 2015/07
The geological, hydraulic and geochemical data such as rock mass classification, groundwater inflow points and the volume, water pressure, and hydraulic conductivity were obtained from boreholes (13MI3813MI44) in the -500m Access/Research Gallery-North of Mizunami Underground Research laboratory (MIU). In addition to data acquisition, monitoring systems were installed to observe hydrochemical changes in the groundwater, and rock strain during and after the groundwater recovery experiment.
Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Kawamoto, Koji; Yamada, Nobuto; Ishibashi, Masayuki; Murakami, Hiroaki; Matsuoka, Toshiyuki; Sasao, Eiji; Sanada, Hiroyuki; et al.
JAEA-Review 2014-038, 137 Pages, 2014/12
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2013. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2013, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.
Kawamoto, Koji; Kuroiwa, Hiroshi; Yamada, Nobuto; Onuki, Kenji; Omori, Kazuaki; Takeuchi, Ryuji; Ogata, Nobuhisa; Omori, Masaki; Watanabe, Kazuhiko
JAEA-Technology 2014-011, 92 Pages, 2014/07
This document summarizes the data of pilot boreholes (12MI32) in the -500m Access/Research Gallery-South. The geological, hydraulic and geochemical data were obtained. In addition, groundwater monitoring system was installed to observe the groundwater pressure in initial condition and change during the excavation of gallery. The results of investigation, biotite granite with medium to coarse-grained equigranular texture are characterized. Rock mass classification is B from CM class. Minor fault with fault breccia are observed around 48.90mabh. However, S200_13 fault and IF_SB3_13_3 fault (that were presumed by an original model) were not observed. Density of fracture is large in the section of 40.00 to 80.00mabh. Water inflow was a maximum of 600 L/min in 78.83mabh. Permeability ranges from 2.0E-9 to 1.5E-08m/sec at the zone with low inflow, from 1.1E-05 to 1.6E-05m/sec at the zone with high inflow, respectively. Groundwater chemistry is rich in Na and Cl ion.
Kaneko, Koji; Raymond, S.*; Ressouche, E.*; Lapertot, G.*; Takeuchi, Tetsuya*; Hirose, Yusuke*; Honda, Fuminori*; Onuki, Yoshichika
JPS Conference Proceedings (Internet), 3, p.011061_1 - 011061_5, 2014/06
Kaneko, Koji; Stockert, O.*; Fk, B.*; Raymond, S.*; Skoulatos, M.*; Takeuchi, Tetsuya*; Onuki, Yoshichika*
Physical Review B, 89(24), p.241105_1 - 241105_5, 2014/06
Times Cited Count:2 Percentile:9.32(Materials Science, Multidisciplinary)Kawasaki, Takuro; Kaneko, Koji; Aso, Naofumi*; Nakamura, Ai*; Hedo, Masato*; Nakama, Takao*; Onuki, Yoshichika*; Ohara, Takashi; Kiyanagi, Ryoji; Oikawa, Kenichi; et al.
JPS Conference Proceedings (Internet), 1, p.014009_1 - 014009_4, 2014/03
Tsuyuguchi, Koji; Kuroiwa, Hiroshi; Kawamoto, Koji; Yamada, Nobuto; Onuki, Kenji; Iwatsuki, Teruki; Takeuchi, Ryuji; Ogata, Nobuhisa; Suto, Masahiro; Mikake, Shinichiro
JAEA-Technology 2013-044, 89 Pages, 2014/02
This document summarizes the data of pilot boreholes (12MI27, 12MI33) in the -500m Access/Research Gallery-North. The geological, hydraulic and geochemical data were obtained. In addition, groundwater monitoring system was installed in closure test gallery for the flooding test in phase III research. The results of investigation, biotite granite with medium to coarse-grained equigranular texture are characterized. Rock mass classification is B from CH class. Minor fault with fault gouge that was not presumed by an original model are observed in 12MI33. Density of fracture in 12MI27 near the Main-shaft fault tends to be compared to 12MI33. Water inflow in both boreholes is less. Permeability ranges from 4.8E-10 to 6.1E-09m/sec at the zone without alteration and with low inflow, from 1.1E-07 to 2.7E-07m/sec at the zone without alteration and with high inflow, respectively. Groundwater chemistry is rich in Na and Cl ion.