Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06
Times Cited Count:6 Percentile:33.97(Engineering, Electrical & Electronic)The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 NbSn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.
Nabara, Yoshihiro; Suwa, Tomone; Takahashi, Yoshikazu; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200305_1 - 4200305_5, 2015/06
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*
IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06
Times Cited Count:16 Percentile:61.92(Engineering, Electrical & Electronic)Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Suwa, Tomone; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; et al.
IEEE Transactions on Applied Superconductivity, 24(3), p.6000605_1 - 6000605_5, 2014/06
Times Cited Count:7 Percentile:39.26(Engineering, Electrical & Electronic)no abstracts in English
Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.
IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06
Times Cited Count:26 Percentile:74.52(Engineering, Electrical & Electronic)Japan Atomic Energy Agency (JAEA) is procuring all amounts of NbSn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.
Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Matsui, Kunihiro; Koizumi, Norikiyo; et al.
IEEE Transactions on Applied Superconductivity, 23(3), p.4801604_1 - 4801604_4, 2013/06
Times Cited Count:10 Percentile:47.78(Engineering, Electrical & Electronic)no abstracts in English
Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06
Times Cited Count:11 Percentile:50.35(Engineering, Electrical & Electronic)Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 NbSn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.
Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06
Times Cited Count:7 Percentile:41.24(Engineering, Electrical & Electronic)Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 NbSn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of NbSn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.
Hamada, Kazuya; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Kawano, Katsumi; Saito, Toru; Oshikiri, Masayuki; Uno, Yasuhiro; Koizumi, Norikiyo; Nakajima, Hideo; et al.
IEEE Transactions on Applied Superconductivity, 22(3), p.4203404_1 - 4203404_4, 2012/06
Times Cited Count:17 Percentile:63.80(Engineering, Electrical & Electronic)Japan Atomic Energy Agency (JAEA) has the responsibility for procurement of all of the ITER central solenoid (CS) conductor lengths. The CS conductor is composed of 576 Nb Sn superconducting strands and 288 Cu strands assembled together into a multistage cable and protected by a circle-in-square sheath tube (jacket) with the outer dimension of 49 mm. In preparation for CS conductor production, the following R&D activities have been performed; (1) Mechanical tests at 4 K have been performed for jacket candidate materials such as 316LN and JK2LB, (2) Welding test for filler selection, (3) Measurement of coefficient of sliding friction using a 100-m long dummy cable, (4) Deformation characteristics of the conductor cross section after compaction and spooling. As a result of these R&D, the CS conductor jacket manufacturing technologies have been confirmed to start the procurement of the CS conductor.
Nabara, Yoshihiro; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Takahashi, Yoshikazu; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Ebisawa, Noboru; et al.
IEEE Transactions on Applied Superconductivity, 22(3), p.4804804_1 - 4804804_4, 2012/06
Times Cited Count:18 Percentile:65.24(Engineering, Electrical & Electronic)no abstracts in English
Hamada, Kazuya; Takahashi, Yoshikazu; Nabara, Yoshihiro; Kawano, Katsumi; Ebisawa, Noboru; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Saito, Toru*; Nakajima, Hideo; Matsuda, Hidemitsu*; et al.
Teion Kogaku, 47(3), p.153 - 159, 2012/03
The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA has constructed newly conductor manufacturing facility. Prior to starting conductor, JAEA manufactured a 760-m long Cu dummy conductor as process qualification of dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.
Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.
Nuclear Fusion, 51(11), p.113015_1 - 113015_11, 2011/11
Times Cited Count:12 Percentile:46.54(Physics, Fluids & Plasmas)Japan Atomic Energy Agency is procuring the NbSn superconductors for Toroidal Field (TF) Coils under the ITER project. Because manufacturing amount of NbSn strands is quite large compared with the past experience and required superconducting performance is higher than that of the model coils which have been fabricated and tested in the ITER-EDA, quality control technique is very important for the manufacture of the strands. Sophisticated control technique is also required for the jacketing, in order to fabricate the conductors with the precise outer diameter and without leakage at welding part. This paper summarizes the technical developments leading to the first successful mass production of ITER TF conductors.
Hamada, Kazuya; Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; et al.
Fusion Engineering and Design, 86(6-8), p.1506 - 1510, 2011/10
Times Cited Count:12 Percentile:66.62(Nuclear Science & Technology)Japan Atomic Energy Agency has a responsibility for procurement of the ITER toroidal field coil conductors as Japanese Domestic Agency (JADA) of the ITER project. The TF conductor is a circular shaped cable-in-conduit conductor, which is composed of cable and stainless steel conduit (jacket). The outer diameter and wall thickness of jacket are 43.7mm and 2mm, respectively. The cable consists of 900 NbSn superconducting strands and 522 Cu strands. The length of TF conductor is 780m in maximum. Preparation of conductor fabrication was completed in December 2009. And then, to demonstrate a conductor manufacturing procedure, JADA fabricated 780m-long Cu dummy conductor as a process qualification. Finally, the 780m-long Cu dummy conductor has been successfully completed, ahead of other domestic agencies that are in charge of TF conductor procurement. Since all of manufacturing processes have been qualified, JADA started to fabricate superconducting conductors for TF coils.
Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.
Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03
Japan Atomic Energy Agency is procuring the NbSn superconductors for Toroidal Field (TF) coils under the ITER project. Because manufacturing amount of NbSn strands is quite large compared with the past experience and required superconducting performance is higher than that of the model coils which have been fabricated and tested in the ITER-EDA, quality control technique is very important for the manufacture of the strands. Sophisticated control technique is also required for the jacketing, in order to fabricate the conductors with the precise outer diameter and without leakage at welding part. Cu dummy conductor with full length (760 m) has been fabricated successfully and all jacketing technology was confirmed through this fabrication. The fabrication of the NbSn conductor for TF coils will start in March 2010.
Nabara, Yoshihiro; Isono, Takaaki; Nunoya, Yoshihiko; Koizumi, Norikiyo; Hamada, Kazuya; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Uno, Yasuhiro*; Seki, Shuichi*; et al.
Journal of Plasma and Fusion Research SERIES, Vol.9, p.270 - 275, 2010/08
Matsui, Kunihiro; Isono, Takaaki; Nunoya, Yoshihiko; Hemmi, Tsutomu; Okui, Yoshio*; Oshikiri, Masayuki; Koizumi, Norikiyo; Takahashi, Yoshikazu; Okuno, Kiyoshi; Stepanov, B.*; et al.
IEEE Transactions on Applied Superconductivity, 19(3), p.1470 - 1473, 2009/06
Times Cited Count:20 Percentile:67.53(Engineering, Electrical & Electronic)Conductor procurement for ITER Toroidal Field (TF) coils in Japan has just stated in the spring of 2008 under agreement with ITER organization. Before the activity, each NbSn conductor must be tested at SULTAN facility in Switzerland for qualification of the conductor. The TF conductor is cable-in-conduit type with about 40 mm outer diameter and is composed of 900 NbSn strands, 522 Cu strands, a central spiral and a 316LN tube. Required performance of the conductor is Tcs of 5.7 K at 68 kA and 11.3 T, which is operating condition of TF coils. Japan has four NbSn strand suppliers for ITER and two of them were already tested as Japanese 1st and 2nd SULTAN samples. This paper shows test results of 3rd Japanese SULTAN sample using NbSn strands fabricated by resting two suppliers.
Nunoya, Yoshihiko; Takahashi, Yoshikazu; Hamada, Kazuya; Isono, Takaaki; Matsui, Kunihiro; Oshikiri, Masayuki; Nabara, Yoshihiro; Hemmi, Tsutomu; Nakajima, Hideo; Kawano, Katsumi; et al.
IEEE Transactions on Applied Superconductivity, 19(3), p.1492 - 1495, 2009/06
Times Cited Count:1 Percentile:12.08(Engineering, Electrical & Electronic)The ITER Poloidal Field Conductor Insert (PFCI) was constructed to characterize the performance of selected cable-in-conduit NbTi conductors for the ITER Poloidal Field (PF) under relevant operating conditions. The PFCI was installed and tested inside the bore of the ITER CS model coil, which provides the background magnetic field. The PFCI is a single-layer solenoid, wound from about 50 m of a full-size ITER cable-in-conduit conductor. The winding diameter and height are about 1.5 m and 1 m, respectively. The nominal design current of the conductor is 45 kA at 6 T and 5 K. The main items in the PFCI test programme are current sharing temperature (Tcs) measurements, critical current (Ic) measurements and AC loss measurement. The key technology of the installation, the test methods and procedures, and some preliminary results of the testing campaigns are described and discussed in this paper.
Takahashi, Yoshikazu; Isono, Takaaki; Koizumi, Norikiyo; Nunoya, Yoshihiko; Matsui, Kunihiro; Nabara, Yoshihiro; Hemmi, Tsutomu; Oshikiri, Masayuki; Uno, Yasuhiro*; Okuno, Kiyoshi; et al.
IEEE Transactions on Applied Superconductivity, 18(2), p.471 - 474, 2008/06
Times Cited Count:16 Percentile:62.60(Engineering, Electrical & Electronic)The ITER TF coil system consists of 18 D-shape coils. The operating current and the maximum field are 68 kA and 11.8 T, respectively. A NbSn cable-in-conduit conductor with a central channel is used, with a unit length of about 380 m. A cable consists of 900 NbSn strands and 522 Cu strands with a diameter of 0.82 mm. Superconducting performance of full-size conductors manufactured was measured at the operating condition of the TF coils with the maximum field. The strands made by bronze and internal-Sn methods were used for the sample conductors with a void fraction of 29% and 33%, respectively. The measured current sharing temperatures Tcs are 6.5-6.7K for the bronze route method and 5.7-5.9K for the internal-Sn method. The Tcs of the conductor with small void fraction is relatively higher with 0.1-0.2K than that with large void fraction. It is confirmed that Tcs of both strands is higher than the design value (5.7K). It is shown from the results that the strain on the conductor, estimated by the strand data, is about -0.7%. This value seems to be reasonable.
Okuno, Kiyoshi; Nakajima, Hideo; Sugimoto, Makoto; Isono, Takaaki; Kawano, Katsumi; Koizumi, Norikiyo; Hamada, Kazuya; Nunoya, Yoshihiko; Matsui, Kunihiro; Nabara, Yoshihiro; et al.
Nuclear Fusion, 47(5), p.456 - 462, 2007/05
Times Cited Count:8 Percentile:29.19(Physics, Fluids & Plasmas)no abstracts in English
Okuno, Kiyoshi; Nakajima, Hideo; Sugimoto, Makoto; Isono, Takaaki; Kawano, Katsumi; Koizumi, Norikiyo; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Kitamura, Kazunori; et al.
Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03
The ITER superconducting magnet system consists of 18 TF coils, one CS and six Poloidal Field (PF) coils. Among six PTs, Japan, EU and US will be responsible for major part of the superconducting magnets, and Japanese contribution will be the largest, including the following four areas: part of TF conductors, about half (9 out of 19) of TF coil winding packs, most of TF coil structures and part of CS conductor. Since 2004, Japan Atomic Energy Agency (JAEA) started preparation activities for procurement, including manufacturing studies to identify detailed fabrication processes and tools for critical components, such as TF coil winding and case, and manufacturing demonstrations at full scale level on NbSn strands and conductors and cryogenic structural materials, such as coil case segments and radial plates. Details are described in the following sections.