Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JRR-3, JRR-4 and JRTF facilities, 2

Tobita, Minoru*; Goto, Katsunori*; Omori, Takeshi*; Osone, Osamu*; Haraga, Tomoko; Aono, Ryuji; Konda, Miki; Tsuchida, Daiki; Mitsukai, Akina; Ishimori, Kenichiro

JAEA-Data/Code 2023-011, 32 Pages, 2023/11

JAEA-Data-Code-2023-011.pdf:0.93MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to the study of radioactivity concentration evaluation methods for radioactive wastes generated from nuclear research facilities, we collected and analyzed concrete samples generated from JRR-3, JRR-4 and JAERI Reprocessing Test Facility. In this report, we summarized the radioactivity concentrations of 23 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{133}$$Ba, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{235}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal years 2021-2022.

Oral presentation

A Method of fabrication meso-nozzle for bubbling

Osone, Ryuji; Bucheeri, A.; Kurishita, Hiroaki*; Kato, Masahiro*; Yamasaki, Kazuhiko*; Maekawa, Katsuhiro*; Naoe, Takashi; Futakawa, Masatoshi

no journal, , 

Liquid mercury target system for high power spallation neutron sources is being developed. When high intensity proton beams are injected into the target, pressure waves are generated by the thermal shock in mercury and pitting damage will be imposed on the target vessel. Bubble injection into mercury is effective to mitigate the pressure waves. In this work, we propose a method of fabricating meso-nozzle for bubble injection. The method is based on powder metallurgy by inserting thin glass fibers into a metal powder matrix to create a green compact, followed by sintering at a temperature between the melting points of the powder and the fiber. SUS316L and molybdenum powders were used as the nozzle matrix materials. In order to investigate optimum sintering condition, experiments were performed at different combination of pressing load and sintering temperature. We found that in molybdenum high relative density and straight hole with circlar cross section were obtained.

2 (Records 1-2 displayed on this page)
  • 1