Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 85

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Commitment to sustainable Particle Accelerator Society of Japan; First roundtable meeting for communication with students and companies/research institutions

Harada, Hiroyuki; Sakaue, Kazuyuki*; Otani, Masashi*; Soda, Hikaru*

Kasokuki, 20(4), p.332 - 335, 2024/01

In Japan, where the birthrate is declining, securing young people to lead the next generation is an important issue for all organisations. The Particle Accelerator Society of Japan has nearly 1,000 members with increasing up to now, but it is necessary to take measures for the future. Therefore, the Events Committee and the Activation Committee of the Society jointly organised "First Roundtable meeting for communication with students and companies/research institutions". The aim of this meeting was to increase opportunities to connect students and companies/research institutions, to help students resolve their concerns about the future through job, and to help secure human resources for community. This paper reports on this meeting and its future as a new initiative towards the sustainable academic society.

Journal Articles

Development of hydrogen oxidation reaction catalysts to overcome CO poisoning and elucidation of reaction mechanism

Inagawa, Kohei*; Matsumura, Daiju; Taniguchi, Masashi*; Uegaki, Shinya*; Nakayama, Tomohito*; Urano, Junnosuke*; Aotani, Takuro*; Tanaka, Hirohisa*

Journal of Physical Chemistry C, 127(24), p.11542 - 11549, 2023/06

 Times Cited Count:0 Percentile:0.00(Chemistry, Physical)

Journal Articles

End-to-end simulations and error studies of the J-PARC muon linac

Takeuchi, Yusuke*; Tojo, Junji*; Yamanaka, T.*; Nakazawa, Yuga*; Iinuma, Hiromi*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; et al.

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.562 - 564, 2022/10

A muon linac is under development for future muon g-2/EDM experiments at J-PARC. The linac provides a 212 MeV muon beam to an MRI-type compact storage ring. After the initial acceleration using the electrostatic field created by mesh and cylindrical electrodes, the muons are accelerated using four types of radio-frequency accelerators. To validate the linac design as a whole, end-to-end simulations were performed using General Particle Tracer. In addition, error studies were performed to investigate the effects on beam and spin dynamics of various errors in the accelerator components and input beam distribution. This paper describes the results of the end-to-end simulations and error studies.

Journal Articles

High-power test of an APF IH-DTL prototype for the muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, N.*; Mibe, Tsutomu*; Mizobata, Satoshi*; Otani, Masashi*; et al.

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.275 - 278, 2022/09

We conducted a high-power test of a prototype cavity of a 324-MHz inter-digital H-mode drift tube linac (IH-DTL) for the muon g-2/EDM experiment at J-PARC. This prototype cavity (short-IH) was developed to verify the fabrication methodology for the full-length IH cavity with a monolithic DT structure. After 40 h of conditioning, the short-IH has been stably operated with an RF power of 88 kW, which corresponds to 10% higher accelerating field than the design field (E0) of 3.0 MV/m. In addition, the thermal characteristics and frequency response were measured, verifying that the experimental data was consistent with the three-dimensional model. In this paper, the high-power tests of this IH-DTL for muon acceleration are described.

Journal Articles

Acceleration efficiency of TE-mode structures for proton linacs

Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.177 - 179, 2022/09

Various types of cavity structures are typically used in hadron linacs, depending on the energy range of the beam particle. This is especially the case in a normal-conducting linac, because the cavity's acceleration efficiency varies with the velocity of the synchronous particle. For low-energy proton acceleration, while Alvarez drift-tube linacs (DTLs) are the most prevalent, TE-mode accelerating structures, which could also be called H-mode structures, are also widely used immediately after an initial radiofrequency quadrupole linac (RFQ). At present, the representative structures of TE modes are interdigital H-mode (IH) DTL and crossbar H-mode (CH) DTL, which are based on the TE11-mode pillbox cavity and TE21-mode pillbox cavity, respectively. In this presentation, acceleration efficiency of TE-mode structures including higher-order TE-modes such as TE31 and TE41 was comparatively reviewed with Alvarez DTL. This study shows that IH-DTL and CH-DTL have a larger shunt impedance than Alvarez DTL for proton acceleration below 10 MeV, and furthermore for the TEm1-mode structures, the rotational symmetry of the electric field improves with increasing angular index m.

Journal Articles

The Muon linac project at J-PARC

Kondo, Yasuhiro; Kitamura, Ryo; Fuwa, Yasuhiro; Morishita, Takatoshi; Moriya, Katsuhiro; Takayanagi, Tomohiro; Otani, Masashi*; Cicek, E.*; Ego, Hiroyasu*; Fukao, Yoshinori*; et al.

Proceedings of 31st International Linear Accelerator Conference (LINAC 2022) (Internet), p.636 - 641, 2022/09

The muon linac project for the precise measurement of the muon anomalous magnetic and electric dipole moments, which is currently one of the hottest issues of the elementary particle physics, is in progress at J-PARC. The muons from the J-PARC muon facility are once cooled to room temperature, then accelerated up to 212 MeV with a normalized emittance of 1.5 $$pi$$ mm mrad and a momentum spread of 0.1%. Four types of accelerating structures are adopted to obtain the efficient acceleration with a wide beta range from 0.01 to 0.94. The project is moving into the construction phase. We already demonstrated the re-acceleration scheme of the decelerated muons using a 324-MHz RFQ in 2017. The high-power test of the 324-MHz Interdigital H-mode (IH) DTL using a prototype cavity was performed in 2021. The fabrication of the first module of 14 modules of the 1296-MHz Disk and Washer (DAW) CCL will be done to confirm the production process. Moreover, the final design of the travelling wave accelerating structure for the high beta region is also proceeding. In this paper, the recent progress toward the realization of the world first muon linac will be presented.

Journal Articles

Design and beam dynamics study of disk-loaded structure for muon LINAC

Sumi, Kazumichi*; Iijima, Toru*; Inami, Kenji*; Sue, Yuki*; Yotsuzuka, Mai*; Ego, Hiroyasu*; Otani, Masashi*; Saito, Naohito*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; et al.

Journal of Physics; Conference Series, p.012038_1 - 012038_6, 2022/07

The disk-loaded structures (DLS) in the muon LINAC are under development for the J-PARC muon g-2/EDM experiment. Four DLSs with an accelerating gradient of 20 MV/m take charge of muon acceleration from 40 MeV to 212 MeV, which corresponds to 70% to 94% of the speed of light. The quasi-constant gradient type TM01-2$$pi$$/3 mode DLSs with gradually varying disk spacing was designed and it was confirmed that the cumulative phase slip due to the mismatch between muon and phase velocity can be suppressed to less than 2 degrees at the frequency of 2592 MHz. In addition, the optimum synchronous phase and the lattice were investigated to satisfy the requirements of the total emittance less than 1.5$$pi$$ mm mrad and the momentum spread less than 0.1% in RMS.

Journal Articles

Fabrication and low-power test of disk-and-washer cavity for muon acceleration

Takeuchi, Yusuke*; Tojo, Junji*; Nakazawa, Yuga*; Kondo, Yasuhiro; Kitamura, Ryo; Morishita, Takatoshi; Cicek, E.*; Ego, Hiroyasu*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; et al.

Proceedings of 13th International Particle Accelerator Conference (IPAC 22) (Internet), p.1534 - 1537, 2022/06

The muon g-2/EDM experiment is under preparation at Japan Proton Accelerator Research Complex (J-PARC), and the muon linear accelerator for the experiment is being developed. A Disk-and-Washer (DAW) cavity will be used for the medium-velocity part of the accelerator, and muons will be accelerated from $$v/c$$ = $$beta$$ = 0.3 to 0.7 with the operating frequency of 1.296 GHz. Machining, brazing, and low-power measurements of a prototype cell reflecting the design of the first tank of DAW were performed to identify fabrication problems. Several problems were identified, such as misalignment of washers during brazing, and some measures will be taken in the actual tank fabrication. In this paper, the results of the prototype cell fabrication will be reported.

Journal Articles

An Automotive intelligent catalyst that contributes to hydrogen safety for the Decommissioning of Fukushima Daiichi Nuclear Power Station (1FD)

Tanaka, Hirohisa*; Masaki, Sayaka*; Aotani, Takuro*; Inagawa, Kohei*; Iwata, Sogo*; Aida, Tatsuya*; Yamamoto, Tadasuke*; Kita, Tomoaki*; Ono, Hitomi*; Takenaka, Keisuke*; et al.

SAE Technical Paper 2022-01-0534 (Internet), 10 Pages, 2022/03

Journal Articles

High intensity beam studies for the new MEBT1 design

Okabe, Kota; Liu, Y.*; Otani, Masashi*; Moriya, Katsuhiro; Shibata, Takanori*; Chimura, Motoki*; Hirano, Koichiro; Oguri, Hidetomo; Kinsho, Michikazu

JPS Conference Proceedings (Internet), 33, p.011011_1 - 011011_6, 2021/03

To realize more stable operation of the J-PARC accelerators, we have a re-design plan of an MEBT1 (Medium Energy Beam Transport). At the J-PARC Linac, the MEBT1 has transverse and longitudinal beam matching section for the DTLs. However there are some locally activated spots in DTL area at the current beam power level. To reduce beam loss during a beam acceleration at the DTLs is a most important task for a stable user operation. The first thing we should do is investigation a connection between beam quality in the MEBT1 and parameters of the upstream hardware. In this presentation, we will report a high intensity beam study results at the MEBT1.

Journal Articles

Phase space formation of high intensity 60 and 80 mA H$$^-$$ beam with orifice in J-PARC front-end

Shibata, Takanori*; Ikegami, Kiyoshi*; Nammo, Kesao*; Liu, Y.*; Otani, Masashi*; Naito, Fujio*; Shinto, Katsuhiro; Okoshi, Kiyonori; Okabe, Kota; Kondo, Yasuhiro; et al.

JPS Conference Proceedings (Internet), 33, p.011010_1 - 011010_6, 2021/03

Together with the intensity upgrade in J-PARC Linac Front-End, improvement of RFQ transmission ratio is an important task. This RFQ transmission ratio depends strongly upon the solenoid current settings in the low energy beam transport line (LEBT). In the present study, high beam current cases (72 mA and 88 mA H$$^-$$ beam current in LEBT) are investigated at a test-stand. Phase space distributions of the H$$^-$$ beam particles at the RFQ entrance are measured and compared with numerical results by Particle-In-Cell simulation. As a result, it has been clarified that a 15 mm $$phi$$ orifice for differential pumping of H$$_2$$ gas coming from the ion source plays a role as a collimator in these beam conditions. This leads to change the beam emittance and Twiss parameters at the RFQ entrance. Especially in the condition with the beam current up to 88 mA in LEBT, the beam collimation contributes to optimize the phase space distribution to the RFQ acceptance with relatively low solenoid current settings. As a higher solenoid current setting would be necessary to suppress the beam expansion due to high space charge effect, these results suggest that current-saving of the solenoids can be possible even in the higher beam intensity operations.

Journal Articles

Development of negative muonium ion source for muon acceleration

Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.

Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03

 Times Cited Count:2 Percentile:26.38(Physics, Nuclear)

A negative muonium ion (Mu$$^{-}$$) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu$$^{-}$$ ions was conducted to evaluate the performance of the Mu$$^{-}$$ ion source. The measured event rate of Mu$$^{-}$$ ions was $$(1.7 pm 0.3) times 10^{-3}$$ Mu$$^{-}$$/s when the event rate of the incident muon beam was $$1.3times10^{6}$$/s. The formation probability, defined as the ratio of the Mu$$^{-}$$ ions to the incident muons on the Al target, was $$(1.1 pm 0.2(textrm{stat.})^{-0.0}_{+0.1}(textrm{syst.})) times10^{-6}$$. This Mu$$^{-}$$ ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.

Journal Articles

Conceptual design of a L-band linac for muon acceleration

Kondo, Yasuhiro; Otani, Masashi*

Proceedings of 17th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.218 - 221, 2020/10

A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. In the current reference design, a 324 MHz radio frequency quadrupole (RFQ) and an interdigital H-mode drift tube linac (IH-DTL) are used for the low beta acceleration. We propose a 1300 MHz (L band) RFQ and Coupled Cavity DTL (CCDTL) instead of the 324 MHz RFQ and IH-DTL as an alternative to simplify the configuration of the muon linac. In this paper, the present status of the design of this L-band frontend of the muon linac is described. The beam dynamics design has been done and the linac design of a 3.3 m length and 0.4 MW power dissipation was obtain.

Journal Articles

Development of a bunch-width monitor for low-intensity muon beam below a few MeV

Sue, Yuki*; Yotsuzuka, Mai*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Inami, Kenji*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kitamura, Ryo; et al.

Physical Review Accelerators and Beams (Internet), 23(2), p.022804_1 - 022804_7, 2020/02

 Times Cited Count:2 Percentile:21.19(Physics, Nuclear)

A destructive monitor to measure the longitudinal bunch width of a low-energy and low-intensity muon beam was developed. This bunch-width monitor (BWM) employed microchannel plates to detect a single muon with high time resolution. In addition, constant-fraction discriminators were adopted to suppress the time-walk effect. The time resolution was measured to be 65 ps in rms using a picosecond-pulsed laser. This resolution satisfied the requirements of the muon linac of the J-PARC E34 experiment. We measured the bunch width of negative-muonium ions accelerated with a radio-frequency quadrupole using the BWM. The bunch width was successfully measured to be $$sigma$$ 54 $$pm$$ 11 ns, which is consistent with the simulation.

Journal Articles

Longitudinal measurements and beam tuning in the J-PARC linac MEBT1

Otani, Masashi*; Futatsukawa, Kenta*; Miyao, Tomoaki*; Liu, Y.*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo

Journal of Physics; Conference Series, 1350, p.012078_1 - 012078_5, 2019/12

 Times Cited Count:1 Percentile:46.83(Physics, Particles & Fields)

The Japan Proton Accelerator Research Complex (J-PARC) linac is operated with design peak current of 50 mA from 2018. For operation with such a high beam current, itis important to understand transverse and longitudinal beam properties especially in low-velocity region. A medium energy beam transport (MEBT1) line between the 3-MeV radio-frequency quadrupole linac (RFQ) and the 50-MeV drift-tube linac (DTL) is a 3-m-long transport line to match the beam to the DTL and produce a macro pulse configuration for a 3-GeV rapid-cycling synchrotron (RCS). In this paper, recent measurements and beam tuning results in MEBT1 will be presented.

Journal Articles

Upgrade of the 3-MeV linac for testing of accelerator components at J-PARC

Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.

Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12

 Times Cited Count:2 Percentile:68.14(Physics, Particles & Fields)

We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

VSWR adjustment for ACS cavity in J-PARC linac

Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*; Nemoto, Yasuo*

Journal of Physics; Conference Series, 1350, p.012080_1 - 012080_6, 2019/12

 Times Cited Count:0 Percentile:0.00(Physics, Particles & Fields)

In the Japan Proton Accelerator Research Complex (J-PARC) linac, negative hydrogen beams are accelerated from 190 MeV to 400 MeV by Annular-ring Coupled Structure (ACS) cavities. The RF input coupler of the ACS21 cavity, which is the twenty-first (the last) accelerating cavity in the order of beam acceleration, had a comparatively larger Voltage Standing Wave Ratio (VSWR) value than the other ACS cavities. Therefore, we designed and manufactured a rectangular waveguide which has a capacitive iris to adjust the coupling factor of the ACS21 cavity. By making use of the summer maintenance period in 2018, we installed the newly manufactured waveguide to the cavity. Consequently, the VSWR of the ACS21 was successfully decreased to the target value which leads to the critical coupling under the nominal accelerating condition with 50-mA peak beam current.

Journal Articles

The First replacement of the RF window of the ACS cavity

Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*; Nemoto, Yasuo*

Journal of Physics; Conference Series, 1350, p.012079_1 - 012079_6, 2019/12

 Times Cited Count:0 Percentile:0.00(Physics, Particles & Fields)

In 2013, the Annular-ring Coupled Structure (ACS) cavities were installed to the Japan Proton Accelerator Research Complex (J-PARC) linac. Since then, the ACS cavities have been stably running. Although any serious problem induced by the RF window had not yet observed, we decided to replace the RF window of one ACS cavity by the newly manufactured one. The major motivations of the replacement are to check the surface condition of the RF window which have been under operation for nearly five years, to confirm that the new RF window fully meets specifications, and to learn how much time is required for high-power conditioning of the new RF window. By making use of the summer maintenance period of 2018, we carried out the replacement. This was the first experience for us to replace the RF window installed to the ACS cavity in the linac accelerator tunnel. As for the removed RF window, there was no any abnormal warning found with the visual examination. At the resuming of the cavity operation after the maintenance period, we conducted the high-power conditioning in a measured manner. It took around fifty hours so that the targeted peak power was stably input to the cavity through the new RF window. The ACS cavity with the new RF window is now stably operating.

Journal Articles

Negative muonium ion production with a C12A7 electride film

Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.

Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12

 Times Cited Count:3 Percentile:78.02(Physics, Particles & Fields)

Negative muonium atom ($$mu^+$$e$$^-$$e$$^-$$, Mu$$^-$$) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu$$^-$$ were 10$$^{-3}$$/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu$$^-$$ averaged energy: it was 0.2$$pm$$0.1keV.

Journal Articles

Disk and washer coupled cavity linac design and cold-model for muon linac

Otani, Masashi*; Futatsukawa, Kenta*; Mibe, Tsutomu*; Naito, Fujio*; Hasegawa, Kazuo; Ito, Takashi; Kitamura, Ryo; Kondo, Yasuhiro; Morishita, Takatoshi; Iinuma, Hiromi*; et al.

Journal of Physics; Conference Series, 1350, p.012097_1 - 012097_7, 2019/12

 Times Cited Count:3 Percentile:78.02(Physics, Particles & Fields)

A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac to measure muon anomalous magnetic moment and search for electric dipole moment. I will accelerate muons from $$v/c$$ = $$beta$$ = 0.3 to 0.7 at an operational frequency of 1.3GHz. In this poster, the cavity design, beam dynamics design, and the cold-model measurements will be presented.

85 (Records 1-20 displayed on this page)