Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tanaka, Hirohisa*; Masaki, Sayaka*; Aotani, Takuro*; Inagawa, Kohei*; Iwata, Sogo*; Aida, Tatsuya*; Yamamoto, Tadasuke*; Kita, Tomoaki*; Ono, Hitomi*; Takenaka, Keisuke*; et al.
SAE Technical Paper 2022-01-0534 (Internet), 10 Pages, 2022/03
Shibata, Takanori*; Ikegami, Kiyoshi*; Nammo, Kesao*; Liu, Y.*; Otani, Masashi*; Naito, Fujio*; Shinto, Katsuhiro; Okoshi, Kiyonori; Okabe, Kota; Kondo, Yasuhiro; et al.
JPS Conference Proceedings (Internet), 33, p.011010_1 - 011010_6, 2021/03
Together with the intensity upgrade in J-PARC Linac Front-End, improvement of RFQ transmission ratio is an important task. This RFQ transmission ratio depends strongly upon the solenoid current settings in the low energy beam transport line (LEBT). In the present study, high beam current cases (72 mA and 88 mA H beam current in LEBT) are investigated at a test-stand. Phase space distributions of the H
beam particles at the RFQ entrance are measured and compared with numerical results by Particle-In-Cell simulation. As a result, it has been clarified that a 15 mm
orifice for differential pumping of H
gas coming from the ion source plays a role as a collimator in these beam conditions. This leads to change the beam emittance and Twiss parameters at the RFQ entrance. Especially in the condition with the beam current up to 88 mA in LEBT, the beam collimation contributes to optimize the phase space distribution to the RFQ acceptance with relatively low solenoid current settings. As a higher solenoid current setting would be necessary to suppress the beam expansion due to high space charge effect, these results suggest that current-saving of the solenoids can be possible even in the higher beam intensity operations.
Okabe, Kota; Liu, Y.*; Otani, Masashi*; Moriya, Katsuhiro; Shibata, Takanori*; Chimura, Motoki*; Hirano, Koichiro; Oguri, Hidetomo; Kinsho, Michikazu
JPS Conference Proceedings (Internet), 33, p.011011_1 - 011011_6, 2021/03
To realize more stable operation of the J-PARC accelerators, we have a re-design plan of an MEBT1 (Medium Energy Beam Transport). At the J-PARC Linac, the MEBT1 has transverse and longitudinal beam matching section for the DTLs. However there are some locally activated spots in DTL area at the current beam power level. To reduce beam loss during a beam acceleration at the DTLs is a most important task for a stable user operation. The first thing we should do is investigation a connection between beam quality in the MEBT1 and parameters of the upstream hardware. In this presentation, we will report a high intensity beam study results at the MEBT1.
Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.
Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03
Times Cited Count:1 Percentile:32.08(Physics, Nuclear)A negative muonium ion (Mu) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu
ions was conducted to evaluate the performance of the Mu
ion source. The measured event rate of Mu
ions was
Mu
/s when the event rate of the incident muon beam was
/s. The formation probability, defined as the ratio of the Mu
ions to the incident muons on the Al target, was
. This Mu
ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.
Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.
Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12
Times Cited Count:1 Percentile:53.97We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.
Otani, Masashi*; Futatsukawa, Kenta*; Miyao, Tomoaki*; Liu, Y.*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo
Journal of Physics; Conference Series, 1350, p.012078_1 - 012078_5, 2019/12
Times Cited Count:1 Percentile:53.97The Japan Proton Accelerator Research Complex (J-PARC) linac is operated with design peak current of 50 mA from 2018. For operation with such a high beam current, itis important to understand transverse and longitudinal beam properties especially in low-velocity region. A medium energy beam transport (MEBT1) line between the 3-MeV radio-frequency quadrupole linac (RFQ) and the 50-MeV drift-tube linac (DTL) is a 3-m-long transport line to match the beam to the DTL and produce a macro pulse configuration for a 3-GeV rapid-cycling synchrotron (RCS). In this paper, recent measurements and beam tuning results in MEBT1 will be presented.
Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo; et al.
Journal of Physics; Conference Series, 1350, p.012054_1 - 012054_7, 2019/12
Times Cited Count:4 Percentile:92.52An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.
Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.
Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12
Times Cited Count:1 Percentile:53.97Negative muonium atom (e
e
, Mu
) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu
were 10
/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu
averaged energy: it was 0.2
0.1keV.
Otani, Masashi*; Futatsukawa, Kenta*; Mibe, Tsutomu*; Naito, Fujio*; Hasegawa, Kazuo; Ito, Takashi; Kitamura, Ryo; Kondo, Yasuhiro; Morishita, Takatoshi; Iinuma, Hiromi*; et al.
Journal of Physics; Conference Series, 1350, p.012097_1 - 012097_7, 2019/12
Times Cited Count:2 Percentile:76.59A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac to measure muon anomalous magnetic moment and search for electric dipole moment. I will accelerate muons from =
= 0.3 to 0.7 at an operational frequency of 1.3GHz. In this poster, the cavity design, beam dynamics design, and the cold-model measurements will be presented.
Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*; Nemoto, Yasuo*
Journal of Physics; Conference Series, 1350, p.012079_1 - 012079_6, 2019/12
Times Cited Count:0 Percentile:0.07In 2013, the Annular-ring Coupled Structure (ACS) cavities were installed to the Japan Proton Accelerator Research Complex (J-PARC) linac. Since then, the ACS cavities have been stably running. Although any serious problem induced by the RF window had not yet observed, we decided to replace the RF window of one ACS cavity by the newly manufactured one. The major motivations of the replacement are to check the surface condition of the RF window which have been under operation for nearly five years, to confirm that the new RF window fully meets specifications, and to learn how much time is required for high-power conditioning of the new RF window. By making use of the summer maintenance period of 2018, we carried out the replacement. This was the first experience for us to replace the RF window installed to the ACS cavity in the linac accelerator tunnel. As for the removed RF window, there was no any abnormal warning found with the visual examination. At the resuming of the cavity operation after the maintenance period, we conducted the high-power conditioning in a measured manner. It took around fifty hours so that the targeted peak power was stably input to the cavity through the new RF window. The ACS cavity with the new RF window is now stably operating.
Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Naito, Fujio*; Otani, Masashi*; Nemoto, Yasuo*
Journal of Physics; Conference Series, 1350, p.012080_1 - 012080_6, 2019/12
Times Cited Count:0 Percentile:0.07In the Japan Proton Accelerator Research Complex (J-PARC) linac, negative hydrogen beams are accelerated from 190 MeV to 400 MeV by Annular-ring Coupled Structure (ACS) cavities. The RF input coupler of the ACS21 cavity, which is the twenty-first (the last) accelerating cavity in the order of beam acceleration, had a comparatively larger Voltage Standing Wave Ratio (VSWR) value than the other ACS cavities. Therefore, we designed and manufactured a rectangular waveguide which has a capacitive iris to adjust the coupling factor of the ACS21 cavity. By making use of the summer maintenance period in 2018, we installed the newly manufactured waveguide to the cavity. Consequently, the VSWR of the ACS21 was successfully decreased to the target value which leads to the critical coupling under the nominal accelerating condition with 50-mA peak beam current.
Moriya, Katsuhiro; Harada, Hiroyuki; Liu, Y.*; Otani, Masashi*
Journal of Physics; Conference Series, 1350, p.012140_1 - 012140_5, 2019/11
Times Cited Count:0 Percentile:0.07Nakazawa, Yuga*; Bae, S.*; Choi, H.*; Choi, S.*; Iijima, Toru*; Iinuma, Hiromi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kim, B.*; Ko, H. S.*; et al.
Nuclear Instruments and Methods in Physics Research A, 937, p.164 - 167, 2019/09
Times Cited Count:2 Percentile:27.72(Instruments & Instrumentation)A muon linac is under development for the precise measurement of the muon anomalous magnetic moment (-2) and electric dipole moment (EDM) with a reaccelerated thermal muon beam. An H
source driven by an ultraviolet light has been developed for the muon acceleration experiment. Prior to the acceleration experiment, a beamline commissioning was performed using this H
beam, since the accelerated muon intensity is very low. We successfully measured the magnetic rigidity, which is essential for identifying the accelerated muons. This H
source is capable of utilizing as a general-purpose beam source for other beamline.
Kitamura, Ryo; Hayashi, Naoki; Hirano, Koichiro; Kondo, Yasuhiro; Moriya, Katsuhiro; Oguri, Hidetomo; Futatsukawa, Kenta*; Miyao, Tomoaki*; Otani, Masashi*; Kosaka, Satoshi*; et al.
Proceedings of 10th International Particle Accelerator Conference (IPAC '19) (Internet), p.2543 - 2546, 2019/06
A bunch shape monitor (BSM) is one of the important instruments to measure the longitudinal phase space distribution. For example in the J-PARC linac, three BSMs using the tungsten wire are installed at the ACS section to measure the bunch shapes between the accelerating cavities. However, this conventional BSM is hard to measure the bunch shape of H beam with 3 MeV at the beam transport between the RFQ and DTL sections, because the wire is broken around the center region of the beam. The new BSM using the carbon-nano-tube (CNT) wire is being developed to be able to measure the bunch shape of the H
beam with 3 MeV. The careful attention should be paid to apply the high voltage of
10 kV to the CNT wire. The several measures are taken to suppress the discharge from the wire and operate the CNT-BSM. This presentation reports the current status of the development and future prospective for the CNT-BSM.
Otani, Masashi*; Kondo, Yasuhiro; Saito, Naohito; Hasegawa, Kazuo; 7 of others*; J-PARC E34 Collaboration*
JPS Conference Proceedings (Internet), 25, p.011027_1 - 011027_5, 2019/03
We are developing a linac dedicated to the muon acceleration. It enables us to measure the muon anomalous magnetic moment with an accuracy of 0.1 ppm and search for electric dipole moment with a sensitivity of 10 cm to explore beyond Standard Model of elementary particle physics. As a first step for demonstration of the muon acceleration, we are developing the source of slow muon with which RFQ acceleration is conducted. This paper describes status of these developments.
Kondo, Yasuhiro; Morishita, Takatoshi; Tamura, Jun; Otani, Masashi*
Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.794 - 797, 2019/01
A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. In the current reference design, a 324-MHz radio frequency quadrupole (RFQ) and an interdigital H-mode drift tube linac (IH-DTL) are used for the low beta acceleration. We propose a 1300 MHz (L band) RFQ instead of the 324 MHz RFQ and IH-DTL as an alternative to simplify the configuration of the muon linac. In this paper, the present status of the design and the measurement of a cold model of this world first L-band RFQ is described.
Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; et al.
Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.180 - 183, 2019/01
We have developed an Interdigital H-mode (IH) Drift-Tube Linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 and 0.195
mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.
Shibata, Takanori*; Ikegami, Kiyoshi*; Liu, Y.*; Miura, Akihiko; Naito, Fujio*; Nammo, Kesao*; Oguri, Hidetomo; Okoshi, Kiyonori; Otani, Masashi*; Shinto, Katsuhiro; et al.
Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.519 - 521, 2019/01
Transport process of negative hydrogen ion (H) in LEBT (Low Energy Beam Transport) is investigated by comparison of experimental and numerical results. A three dimensional Particle-In-Cell (PIC) particle transport model has been developed in order to take into account (i) axial magnetic field by two solenoids in J-PARC LEBT and (ii) radial electric field by space charge (SC) effect. Ratio of H
beam particles inside the RFQ (Radio Frequency Quadrupole) acceptance to the total particles at the RFQ entrance is calculated for different current conditions in LEBT solenoid 1 and 2. The results are compared with RFQ transmission rate measured in the J-PARC linac commissioning. The double peak of RFQ transmission rate to the solenoid applied current seen in the measurement is explained by the calculation results. The results indicate that presence of the LEBT orifice for differential pumping plays a role as a collimator to reduce emittance at RFQ entrance.
Otani, Masashi*; Futatsukawa, Kenta*; Hirano, Koichiro; Kondo, Yasuhiro; Miura, Akihiko; Oguri, Hidetomo; Liu, Y.*
Nuclear Instruments and Methods in Physics Research A, 908, p.313 - 317, 2018/11
Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)It is extremely important to diagnose beams in accelerators to improve accelerator operation. In the low velocity section of a proton or heavy ion linac, the diagnostic method for longitudinal beam properties is less established compared to that for transverse properties. We have developed a new diagnostic method for the longitudinal bunch size by utilizing an RF deflector. We evaluated the uncertainty in bunch size measurement through simulation, and it was obtained as 0.5. In addition, we measured longitudinal beam emittance through bunch size measurements at several RF amplitudes of an upstream buncher. The measured emittance was 0.13
0.01
deg
MeV, which was consistent with the simulation result.
Tamura, Jun; Kondo, Yasuhiro; Morishita, Takatoshi; Ao, Hiroyuki*; Naito, Fujio*; Otani, Masashi*; Nemoto, Yasuo*
Journal of Physics; Conference Series, 1067(5), p.052009_1 - 052009_6, 2018/09
Times Cited Count:0 Percentile:0.11In the Japan Proton Accelerator Research Complex (J-PARC) linac, the Annular-ring Coupled Structure (ACS) cavities have been stably operating. To maintain this operation availability, we manufactured three pillbox-type RF windows for the ACS cavities in fiscal year 2015 and 2017. It is desirable to minimize the RF reflection of the RF window to prevent standing waves from exciting between the cavity and the RF window, and not to significantly change the optimized coupling factor between the cavity and the waveguide. To realize the minimization, the relative permittivities of the ceramic disks of the RF windows were evaluated by measuring the resonant frequencies of the pillbox cavity containing the ceramic disk. On the basis of the evaluated relative permittivities, the pillbox-part lengths of the RF windows were determined. The measured Voltage Standing Wave Ratios (VSWRs) of the manufactured RF windows are just about 1.08 and these are applicable for the practical use.