Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ikeda, Kazutaka*; Sashida, Sho*; Otomo, Toshiya*; Oshita, Hidetoshi*; Honda, Takashi*; Hawai, Takafumi*; Saito, Hiraku*; Ito, Shinichi*; Yokoo, Tetsuya*; Sakaki, Koji*; et al.
International Journal of Hydrogen Energy, 51(Part A), p.79 - 87, 2024/01
Times Cited Count:3 Percentile:43.34(Chemistry, Physical)Tamatsukuri, Hiromu; Fukui, Keiga*; Iimura, Soshi*; Honda, Takashi*; Tada, Tomofumi*; Murakami, Yoichi*; Yamaura, Junichi*; Kuramoto, Yoshio*; Sagayama, Hajime*; Yamada, Takeshi*; et al.
Physical Review B, 107(18), p.184114_1 - 184114_8, 2023/05
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Hattori, Takanori; Nakamura, Mitsutaka; Iida, Kazuki*; Machida, Akihiko*; Sano, Asami; Machida, Shinichi*; Arima, Hiroshi*; Oshita, Hidetoshi*; Honda, Takashi*; Ikeda, Kazutaka*; et al.
Physical Review B, 106(13), p.134309_1 - 134309_9, 2022/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Hydrogen vibration excitations of fluorite-type ZrH and TiH were investigated up to 21 GPa and 4 GPa, respectively, by incoherent inelastic neutron scattering experiments. The first excitation energies increased with pressure, as described by the equations (meV) = 141.4(2) + 1.02(2)(GPa) and (meV) = 149.4(1) + 1.21(8)(GPa) for ZrH and TiH, respectively. Coupling with pressure dependence of lattice parameters, the relations between metal-hydrogen distance () and are found to be well described by the equations (meV) = 1.62(9) 10 ((meV) = 1.47(21) 10 (AA), respectively. The slopes of these curves are much steep compared to the previously reported trend in various fluorite-type metal hydrides at ambient pressure. The hydrogen wave function spreading showed that the local potential field for a hydrogen atom shrinks more intensively than the tetrahedral site. These behavior is likely caused by the rigid metal ion core and the resulting confinement of the hydrogen atom in the narrower potential field at high pressures.
Nagase, Fumihisa; Otomo, Takashi; Uetsuka, Hiroshi*
Nuclear Technology, 208(3), p.484 - 493, 2022/03
Times Cited Count:2 Percentile:24.93(Nuclear Science & Technology)An Ag-In-Cd control rod alloy was heated in argon or oxygen at 1073-1673 K for 60-3600 s and the release behavior of the elements was examined. Complete liquefaction of the alloy occurred between 1123 and 1173 K, and elemental release was quite limited below the liquefaction temperature. In argon, almost all of the Cd content was released within 3600 s at 1173 K and within 60 s at 1573 K, while the released fractions of Ag and In were 3% and 8%, respectively. In oxygen, the release of Cd, which was quite small at temperatures up to 1573 K, drastically increased to 30-50% at 1673 K for short periods. Releases of Ag and In were also small in oxygen under the examined conditions. Comparison with the experimental data suggests that conventional empirical release models may underestimate the Cd release at lower temperatures just after control rod failure in severe accidents.
Kodama, Katsuaki; Honda, Takashi*; Yamauchi, Hiroki; Shamoto, Shinichi*; Ikeda, Kazutaka*; Otomo, Toshiya*
Journal of the Physical Society of Japan, 90(7), p.074710_1 - 074710_7, 2021/07
Times Cited Count:1 Percentile:13.57(Physics, Multidisciplinary)Mori, Kazuhiro*; Okumura, Ryo*; Yoshino, Hirofumi*; Kanayama, Masaya*; Sato, Setsuo*; Oba, Yojiro; Iwase, Kenji*; Hiraka, Haruhiro*; Hino, Masahiro*; Sano, Tadafumi*; et al.
JPS Conference Proceedings (Internet), 33, p.011093_1 - 011093_6, 2021/03
no abstracts in English
Kodama, Katsuaki; Honda, Takashi*; Ikeda, Kazutaka*; Shamoto, Shinichi; Otomo, Toshiya*
JPS Conference Proceedings (Internet), 33, p.011059_1 - 011059_6, 2021/03
Okudaira, Takuya; Oku, Takayuki; Ino, Takashi*; Hayashida, Hirotoshi*; Kira, Hiroshi*; Sakai, Kenji; Hiroi, Kosuke; Takahashi, Shingo*; Aizawa, Kazuya; Endo, Hitoshi*; et al.
Nuclear Instruments and Methods in Physics Research A, 977, p.164301_1 - 164301_8, 2020/10
Times Cited Count:18 Percentile:89.70(Instruments & Instrumentation)Wu, P.*; Fan, F.-R.*; Hagihara, Masato*; Kofu, Maiko; Peng, K.*; Ishikawa, Yoshihisa*; Lee, S.*; Honda, Takashi*; Yonemura, Masao*; Ikeda, Kazutaka*; et al.
New Journal of Physics (Internet), 22(8), p.083083_1 - 083083_9, 2020/08
Times Cited Count:10 Percentile:60.76(Physics, Multidisciplinary)Thermoelectric material SnSe has aroused world-wide interests in the past years, and its inherent strong lattice anharmonicity is regarded as a crucial factor for its outstanding thermoelectric performance. However, the understanding of lattice anharmonicity in SnSe system remains inadequate, especially regarding how phonon dynamics are affected by this behavior. In this work, we present a comprehensive study of lattice dynamics on NaSnSeS by means of neutron total scattering, inelastic neutron scattering, Raman spectroscopy as well as frozen-phonon calculations. Lattice anharmonicity is evidenced by pair distribution function, inelastic neutron scattering and Raman measurements. By separating the effects of thermal expansion and multi-phonon scattering, we found that the latter is very significant in high-energy optical phonon modes. The strong temperature-dependence of these phonon modes indicate the anharmonicity in this system. Moreover, our data reveals that the linewidths of high-energy optical phonons become broadened with mild doping of sulfur. Our studies suggest that the thermoelectric performance of SnSe could be further enhanced by reducing the contributions of high-energy optical phonon modes to the lattice thermal conductivity via phonon engineering.
Torigoe, Shuhei*; Hattori, Takayuki*; Kodama, Katsuaki; Honda, Takashi*; Sagayama, Hajime*; Ikeda, Kazutaka*; Otomo, Toshiya*; Nitani, Hiroaki*; Abe, Hitoshi*; Murakawa, Hiroshi*; et al.
Physical Review B, 98(13), p.134443_1 - 134443_7, 2018/10
Times Cited Count:11 Percentile:46.26(Materials Science, Multidisciplinary)Kajimoto, Ryoichi; Nakamura, Mitsutaka; Murai, Naoki; Shamoto, Shinichi; Honda, Takashi*; Ikeda, Kazutaka*; Otomo, Toshiya*; Hata, Hiroto*; Eto, Takahiro*; Noda, Masaaki*; et al.
Scientific Reports (Internet), 8(1), p.9651_1 - 9651_8, 2018/06
Times Cited Count:6 Percentile:45.68(Multidisciplinary Sciences)Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.
Sakasai, Kaoru; Sato, Setsuo*; Seya, Tomohiro*; Nakamura, Tatsuya; To, Kentaro; Yamagishi, Hideshi*; Soyama, Kazuhiko; Yamazaki, Dai; Maruyama, Ryuji; Oku, Takayuki; et al.
Quantum Beam Science (Internet), 1(2), p.10_1 - 10_35, 2017/09
Neutron devices such as neutron detectors, optical devices including supermirror devices and He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.
Segawa, Yukari; Horita, Takuma; Kitatsuji, Yoshihiro; Kumagai, Yuta; Aoyagi, Noboru; Nakada, Masami; Otobe, Haruyoshi; Tamura, Yukito*; Okamoto, Hisato; Otomo, Takashi; et al.
JAEA-Technology 2016-039, 64 Pages, 2017/03
The laboratory building No.1 for the plutonium research program (Bldg. Pu1) was chosen as one of the facilities to decommission by Japan Atomic Energy Agency Reform in September, 2013. The research groups, users of Bldg. Pu1, were driven by necessity to remove used equipment and transport nuclear fuel to other facilities from Bldg. Pu1. Research Group for Radiochemistry proactively established the Used Equipment Removal Team for the smooth operation of the removal in April, 2015. The team classified six types of work into the nature of the operation, removal of used equipment, disposal of chemicals, stabilization of mercury, stabilization of nuclear fuel, transportation of nuclear fuel and radioisotope, and survey of contamination status inside the glove boxes. These works were completed in December, 2015. This report circumstantially shows six works process, with the exception of the approval of the changes on the usage of nuclear fuel in Bldg. Pu1 to help prospective decommission.
Hattori, Takanori; Sano, Asami; Arima, Hiroshi*; Komatsu, Kazuki*; Yamada, Akihiro*; Inamura, Yasuhiro; Nakatani, Takeshi; Seto, Yusuke*; Nagai, Takaya*; Utsumi, Wataru; et al.
Nuclear Instruments and Methods in Physics Research A, 780, p.55 - 67, 2015/04
Times Cited Count:82 Percentile:99.02(Instruments & Instrumentation)PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution ( / 0.6%) and the accessible -spacing range (0.2-8.4 ) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.
Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.
Nature Physics, 10(4), p.300 - 303, 2014/04
Times Cited Count:105 Percentile:95.12(Physics, Multidisciplinary)Matsumoto, Yoshihiro; Entani, Shiro; Koide, Akihiro*; Otomo, Manabu; Avramov, P.; Naramoto, Hiroshi*; Amemiya, Kenta*; Fujikawa, Takashi*; Sakai, Seiji
Journal of Materials Chemistry C, 1(35), p.5533 - 5537, 2013/09
Times Cited Count:32 Percentile:76.07(Materials Science, Multidisciplinary)Otomo, Manabu; Tsuchida, Yuya*; Muraya, Naoki*; Yanase, Takashi*; Sakai, Seiji; Yonezawa, Tetsu*; Nagahama, Taro*; Hasegawa, Tetsuya*; Shimada, Toshihiro*
Journal of Physical Chemistry C, 117(22), p.11555 - 11561, 2013/06
Times Cited Count:2 Percentile:8.53(Chemistry, Physical)We report in-plane orientation control of newly developed high-mobility organic semiconductor: 2,7-diphenyl[1]benzothieno[3,2-][1]benzothiophene (DPh-BTBT). As previously reported on monolayer pentacene, it was revealed that bunched steps on vicinal Si(111) with bismuth termination break the surface symmetry and reduce three-fold symmetry of DPh-BTBT grains into quasi-single orientation. Interestingly, the critical step height necessary for the orientation control was different from that of pentacene. We examined several mechanisms of orientation control and concluded that the facet nano structure fabricated by step bunching is working as an anisotropic template. We will also show the wettability control of bismuth terminated silicon surface and show that the growth mode of DPh-BTBT is dependent on the surface nanostructure of Bi-Si.
Kai, Tetsuya; Maekawa, Fujio; Oshita, Hidetoshi*; Sato, Hirotaka; Shinohara, Takenao; Oi, Motoki; Harada, Masahide; Uno, Shoji*; Otomo, Toshiya*; Kamiyama, Takashi*; et al.
Physics Procedia, 43, p.111 - 120, 2013/00
Times Cited Count:20 Percentile:98.26(Physics, Applied)A neutron imaging instrument is in construction at the pulsed neutron source of J-PARC. Some demonstration experiments in NOBORU/J-PARC have carried. To explore widespread applications of the newly built instruments it is indispensable to indicate the range of coverage of this technique. In the presentation, the authors describe the results of some of demonstration measurements, and then compare all elements with the values obtained by multiplying peak cross section and peak widths of neutron resonances in evaluated nuclear data libraries. This value is expected to be a good measure to exhibit visibility of each element in this technique.
Shamoto, Shinichi; Suzuya, Kentaro; Kamiyama, Takashi*; Kodama, Katsuaki; Otomo, Toshiya*; Fukunaga, Toshiharu*
Purazuma, Kaku Yugo Gakkai-Shi, 84(6), p.323 - 332, 2008/06
Pulsed neutron powder diffraction methods are reviewed, including the prospects at MLF facility in J-PARC center by top level scientists in Japan.