Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 49

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

First observation of $$^{28}$$O

Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.

Nature, 620(7976), p.965 - 970, 2023/08

 Times Cited Count:5 Percentile:92.64(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Level structures of $$^{56,58}$$Ca cast doubt on a doubly magic $$^{60}$$Ca

Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.

Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08

 Times Cited Count:1 Percentile:0.02(Astronomy & Astrophysics)

Gamma decays were observed in $$^{56}$$Ca and $$^{58}$$Ca following quasi-free one-proton knockout reactions from $$^{57,59}$$Sc. For $$^{56}$$Ca, a $$gamma$$ ray transition was measured to be 1456(12) keV, while for $$^{58}$$Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the $$2^{+}_{1} rightarrow 0^{+}_{gs}$$ decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for $$2^{+}_{1}$$ level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the $$0_{f5/2}$$ and $$0_{g9/2}$$ orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic $$^{60}$$Ca and potentially drives the dripline of Ca isotopes to $$^{70}$$Ca or even beyond.

Journal Articles

Intruder configurations in $$^{29}$$Ne at the transition into the island of inversion; Detailed structure study of $$^{28}$$Ne

Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.

Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08

 Times Cited Count:2 Percentile:68.16(Astronomy & Astrophysics)

Detailed $$gamma$$-ray spectroscopy of the exotic neon isotope $$^{28}$$Ne has been performed using the one-neutron removal reaction from $$^{29}$$Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for $$^{28}$$Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.

JAEA Reports

Irradiation test using foreign reactor, 1; Study of irradiation test with capsule temperature control system (Joint research)

Takabe, Yugo; Otsuka, Noriaki; Fuyushima, Takumi; Sayato, Natsuki; Inoue, Shuichi; Morita, Hisashi; Jaroszewicz, J.*; Migdal, M.*; Onuma, Yuichi; Tobita, Masahiro*; et al.

JAEA-Technology 2022-040, 45 Pages, 2023/03

JAEA-Technology-2022-040.pdf:6.61MB

Because of the decommission of the Japan Materials Testing Reactor (JMTR), the domestic neutron irradiation facility, which had played a central role in the development of innovative nuclear reactors and the development of technologies to further improve the safety, reliability, and efficiency of light water reactors, was lost. Therefore, it has become difficult to pass on the operation techniques of the irradiation test reactors and irradiation technologies, and to train human resources. In order to cope with these issues, we conducted a study on the implementation of irradiation tests using overseas reactors as neutron irradiation sites as an alternative method. Based on the "Arrangement between the National Centre for Nuclear Research and the Japan Atomic Energy Agency for Cooperation in Research and Development on Testing Reactor," the feasibility of conducting an irradiation test at the MARIA reactor (30 MW) owned by the National Centre for Nuclear Research (NCBJ) using the temperature control system, which is one of the JMTR irradiation technologies, was examined. As a result, it was found that the irradiation test was possible by modifying the ready-made capsule manufactured in accordance with the design and manufacturing standards of the JMTR. After the modification, a penetration test, an insulation continuity test, and an operation test in the range of room temperature to 300$$^{circ}$$C, which is the operating temperature of the capsule, were conducted and favorable results were obtained. We have completed the preparations prior to transport to the MARIA reactor.

Journal Articles

First spectroscopic study of $$^{51}$$Ar by the ($$p$$,2$$p$$) reaction

Juh$'a$sz, M. M.*; Elekes, Z.*; Sohler, D.*; Utsuno, Yutaka; Yoshida, Kazuki; Otsuka, Takaharu*; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Baba, Hidetada*; et al.

Physics Letters B, 814, p.136108_1 - 136108_8, 2021/03

AA2020-0747.pdf:0.83MB

 Times Cited Count:5 Percentile:46.8(Astronomy & Astrophysics)

The nuclear structure of $$^{51}$$Ar was studied by the ($$p$$,2$$p$$) reaction using $$gamma$$-ray spectroscopy for the bound and unbound states. Comparing the results to our shell-model calculations, two bound and six unbound states were established. The low cross sections populating the two bound states of $$^{51}$$Ar could be interpreted as a clear signature for the presence of significant sub-shell closures at neutron numbers 32 and 34 in argon isotopes.

Journal Articles

Quasifree neutron knockout from $$^{54}$$Ca corroborates arising $$N=34$$ neutron magic number

Chen, S.*; Lee, J.*; Doornenbal, P.*; Obertelli, A.*; Barbieri, C.*; Chazono, Yoshiki*; Navr$'a$til, P.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Raimondi, F.*; et al.

Physical Review Letters, 123(14), p.142501_1 - 142501_7, 2019/10

AA2019-0306.pdf:0.57MB

 Times Cited Count:47 Percentile:92.65(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Spectroscopy of strongly deformed $$^{32}$$Ne by proton knockout reactions

Murray, I.*; MacCormick, M.*; Bazin, D.*; Doornenbal, P.*; Aoi, Nori*; Baba, Hidetada*; Crawford, H. L.*; Fallon, P.*; Li, K.*; Lee, J.*; et al.

Physical Review C, 99(1), p.011302_1 - 011302_7, 2019/01

AA2018-0517.pdf:0.8MB

 Times Cited Count:17 Percentile:85.66(Physics, Nuclear)

no abstracts in English

Journal Articles

Nuclear moments of the low-lying isomeric $$1^+$$ state of $$^{34}$$Al; Investigation on the neutron $$1p1h$$ excitation across $$N=20$$ in the island of inversion

Xu, Z. Y.*; Heylen, H.*; Asahi, Koichiro*; Boulay, F.*; Daugas, J. M.*; de Groote, R. P.*; Gins, W.*; Kamalou, O.*; Koszor$'u$s, $'A$.*; Lykiardopoupou, M.*; et al.

Physics Letters B, 782, p.619 - 626, 2018/07

AA2018-0159.pdf:0.5MB

 Times Cited Count:7 Percentile:53.6(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

CIELO collaboration summary results; International evaluations of neutron reactions on uranium, plutonium, iron, oxygen and hydrogen

Chadwick, M. B.*; Capote, R.*; Trkov, A.*; Herman, M. W.*; Brown, D. A.*; Hale, G. M.*; Kahler, A. C.*; Talou, P.*; Plompen, A. J.*; Schillebeeckx, P.*; et al.

Nuclear Data Sheets, 148, p.189 - 213, 2018/02

 Times Cited Count:66 Percentile:98.06(Physics, Nuclear)

The CIELO collaboration has studied neutron cross sections on nuclides that significantly impact criticality in nuclear facilities - $$^{235}$$U, $$^{238}$$U, $$^{239}$$Pu, $$^{56}$$Fe, $$^{16}$$O and $$^{1}$$H - with the aim of improving the accuracy of the data and resolving previous discrepancies in our understanding. This multi-laboratory pilot project, coordinated via the OECD/NEA Working Party on Evaluation Cooperation (WPEC) Subgroup 40 with support also from the IAEA, has motivated experimental and theoretical work and led to suites of new evaluated libraries that accurately reflect measured data and also perform well in integral simulations of criticality. This report summarizes our results and outlines plans for the next phase of this collaboration.

Journal Articles

Cross-shell excitations from the $$fp$$ shell; Lifetime measurements in $$^{61}$$Zn

Queiser, M.*; Vogt, A.*; Seidlitz, M.*; Reiter, P.*; Togashi, Tomoaki*; Shimizu, Noritaka*; Utsuno, Yutaka; Otsuka, Takaharu*; Homma, Michio*; Petkov, P.*; et al.

Physical Review C, 96(4), p.044313_1 - 044313_13, 2017/10

 Times Cited Count:5 Percentile:41.41(Physics, Nuclear)

no abstracts in English

Journal Articles

Shell evolution beyond $$Z$$=28 and $$N$$=50; Spectroscopy of $$^{81,82,83,84}$$Zn

Shand, C. M.*; Podoly$'a$k, Zs.*; G$'o$rska, M.*; Doornenbal, P.*; Obertelli, A.*; Nowacki, F.*; Otsuka, T.*; Sieja, K.*; Tostevin, J. A.*; Tsunoda, T.*; et al.

Physics Letters B, 773, p.492 - 497, 2017/10

 Times Cited Count:25 Percentile:87.36(Astronomy & Astrophysics)

Journal Articles

Type II shell evolution in $$A=70$$ isobars from the $$N geq 40$$ island of inversion

Morales, A. I.*; Benzoni, G.*; Watanabe, H.*; Tsunoda, Yusuke*; Otsuka, T.*; Nishimura, Shunji*; Browne, F.*; Daido, R.*; Doornenbal, P.*; Fang, Y.*; et al.

Physics Letters B, 765, p.328 - 333, 2017/02

 Times Cited Count:34 Percentile:91.97(Astronomy & Astrophysics)

Journal Articles

Are there signatures of harmonic oscillator shells far from stability?; First spectroscopy of $$^{110}$$Zr

Paul, N.*; Corsi, A.*; Obertelli, A.*; Doornenbal, P.*; Authelet, G.*; Baba, Hidetada*; Bally, B.*; Bender, M.*; Calvet, D.*; Ch$^a$teau, F.*; et al.

Physical Review Letters, 118(3), p.032501_1 - 032501_7, 2017/01

 Times Cited Count:43 Percentile:88.64(Physics, Multidisciplinary)

Journal Articles

Identification of deformed intruder states in semi-magic $$^{70}$$Ni

Chiara, C. J.*; Weisshaar, D.*; Janssens, R. V. F.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Harker, J. L.*; Walters, W. B.*; Recchia, F.*; Albers, M.*; Alcorta, M.*; et al.

Physical Review C, 91(4), p.044309_1 - 044309_10, 2015/04

 Times Cited Count:39 Percentile:91.59(Physics, Nuclear)

The neutron-rich isotope $$^{70}$$Ni was produced by multi-nucleon transfer reactions of $$^{70}$$Zn in the Argonne National Laboratory, and an in-beam $$gamma$$-ray experiment were performed using the GRETINA array. The $$2^+_2$$ and $$4^+_2$$ levels of $$^{70}$$Ni were observed for the first time. Those levels are regarded as large deformed states associated with proton excitation from the $$f_{7/2}$$ orbit because they cannot be reproduced by a shell-model calculation assuming a small valence space without $$f_{7/2}$$. A theoretical analysis based on the Monte Carlo shell model published in 2014 indicates that those levels corresponds to a prolate deformed band. The present result demonstrates the occurrence of shape coexistence in neutron-rich Ni isotopes other than a known case of $$^{68}$$Ni, and confirms the predictive power of the Monte Carlo shell-model calculation.

Journal Articles

Neutron spectroscopic factors of $$^{55}$$Ni hole-states from (p,d) transfer reactions

Sanetullaev, A.*; Tsang, M. B.*; Lynch, W. G.*; Lee, J.*; Bazin, D.*; Chan, K. P.*; Coupland, D.*; Hanzl, V.*; Hanzlova, D.*; Kilburn, M.*; et al.

Physics Letters B, 736, p.137 - 141, 2014/09

 Times Cited Count:15 Percentile:69.79(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Observation of a $$p$$-wave one-neutron halo configuration on $$^{37}$$Mg

Kobayashi, Nobuyuki*; Nakamura, Takashi*; Kondo, Yosuke*; Tostevin, J. A.*; Utsuno, Yutaka; Aoi, Nori*; Baba, Hidetada*; Barthelemy, R.*; Famiano, M. A.*; Fukuda, Naoki*; et al.

Physical Review Letters, 112(24), p.242501_1 - 242501_5, 2014/06

 Times Cited Count:89 Percentile:94.33(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Meeting nuclear data needs for advanced reactor systems

Harada, Hideo; Shibata, Keiichi; Nishio, Katsuhisa; Igashira, Masayuki*; Plompen, A.*; Hambsch, F.-J.*; Schillebeeckx, P.*; Gunsing, F.*; Ledoux, X.*; Palmiotti, G.*; et al.

NEA/NSC/WPEC/DOC(2014)446, 111 Pages, 2014/02

Journal Articles

Shape coexistence in $$^{68}$$Ni

Suchyta, S.*; Liddick, S. N.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Bennett, M. B.*; Chemey, A.*; Homma, Michio*; Larson, N.*; Prokop, C. J.*; Quinn, S. J.*; et al.

Physical Review C, 89(2), p.021301_1 - 021301_5, 2014/02

 Times Cited Count:79 Percentile:97.46(Physics, Nuclear)

no abstracts in English

Journal Articles

Spins and magnetic moments of $$^{49}$$K and $$^{51}$$K; Establishing the 1/2$$^+$$ and 3/2$$^+$$ level ordering beyond $$N$$ = 28

Papuga, J.*; Bissell, M. L.*; Kreim, K.*; Blaum, K.*; Brown, B. A.*; De Rydt, M.*; Garcia Ruiz, R. F.*; Heylen, H.*; Kowalska, M.*; Neugart, R.*; et al.

Physical Review Letters, 110(17), p.172503_1 - 172503_5, 2013/04

 Times Cited Count:35 Percentile:82.14(Physics, Multidisciplinary)

no abstracts in English

Journal Articles

Determination of resonance parameters and their covariances from neutron induced reaction cross section data

Schillebeeckx, P.*; Becker, B.*; Danon, Y.*; Guber, K.*; Harada, Hideo; Heyse, J.*; Junghans, A. R.*; Kopecky, S.*; Massimi, C.*; Moxon, M. C.*; et al.

Nuclear Data Sheets, 113(12), p.3054 - 3100, 2012/12

 Times Cited Count:103 Percentile:97.09(Physics, Nuclear)

49 (Records 1-20 displayed on this page)