Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Carrying-out of whole nuclear fuel materials in Plutonium Research Building No.1

Inagawa, Jun; Kitatsuji, Yoshihiro; Otobe, Haruyoshi; Nakada, Masami; Takano, Masahide; Akie, Hiroshi; Shimizu, Osamu; Komuro, Michiyasu; Oura, Hirofumi*; Nagai, Isao*; et al.

JAEA-Technology 2021-001, 144 Pages, 2021/08

JAEA-Technology-2021-001.pdf:12.98MB

Plutonium Research Building No.1 (Pu1) was qualified as a facility to decommission, and preparatory operations for decommission were worked by the research groups users and the facility managers of Pu1. The operation of transportation of whole nuclear materials in Pu1 to Back-end Cycle Key Element Research Facility (BECKY) completed at Dec. 2020. In the operation included evaluation of criticality safety for changing permission of the license for use nuclear fuel materials in BECKY, cask of the transportation, the registration request of the cask at the institute, the test transportation, formulation of plan for whole nuclear materials transportation, and the main transportation. This report circumstantially shows all of those process to help prospective decommission.

Journal Articles

New result in the production and decay of an isotope, $$^{278}$$113 of the 113th element

Morita, Kosuke*; Morimoto, Koji*; Kaji, Daiya*; Haba, Hiromitsu*; Ozeki, Kazutaka*; Kudo, Yuki*; Sumita, Takayuki*; Wakabayashi, Yasuo*; Yoneda, Akira*; Tanaka, Kengo*; et al.

Journal of the Physical Society of Japan, 81(10), p.103201_1 - 103201_4, 2012/10

 Times Cited Count:167 Percentile:97.27(Physics, Multidisciplinary)

An isotope of the 113th element, $$^{278}$$113, was produced in a nuclear reaction with a $$^{70}$$Zn beam on a $$^{209}$$Bi target. We observed six consecutive $$alpha$$ decays following the implantation of a heavy particle in nearly the same position in the semiconductor detector, in extremely low background condition. The fifth and sixth decays are fully consistent with the sequential decays of $$^{262}$$Db and $$^{258}$$Lr both in decay energies and decay times. This indicates that the present decay chain consisted of $$^{278}$$113, $$^{274}$$Rg (Z = 111), $$^{270}$$Mt (Z = 109), $$^{266}$$Bh (Z = 107), $$^{262}$$Db (Z = 105), and $$^{258}$$Lr (Z = 103) with firm connections. This result, together with previously reported results from 2004 and 2007, conclusively leads the unambiguous production and identification of the isotope $$^{278}$$113, of the 113th element.

Journal Articles

Genetic characterization of mutants resistant to the antiauxin ${it p}$-chlorophenoxyisobutyric acid reveals that ${it AAR3}$, a gene encoding a DCN1-like protein, regulates responses to the synthetic auxin 2,4-dichlorophenoxyacetic acid in Arabidopsis roots

Biswas, K. K.*; Oura, Chiharu*; Higuchi, Kanako*; Miyazaki, Yuji*; Nguyen, V. V.*; Rahman, A.*; Uchimiya, Hirofumi*; Kiyosue, Tomohiro*; Koshiba, Tomokazu*; Tanaka, Atsushi; et al.

Plant Physiology, 145(3), p.773 - 785, 2007/11

 Times Cited Count:37 Percentile:66.14(Plant Sciences)

We screened mutants for root growth resistance to a putative antiauxin, PCIB, which inhibits auxin action by interfering the upstream auxin signaling events. Eleven PCIB-resistant mutants were obtained. Genetic mapping indicates that the mutations are located in at least 5 independent loci including two known auxin-related loci, ${it TIR1}$ and ${it AtCUL1}$. ${it antiauxin-resistant}$ mutants (${it aar}$s) ${it aar3-1}$, ${it aar4}$ and ${it aar5}$ were also resistant to 2,4-D as shown by a root growth assay. Positional cloning of ${it aar3-1}$ revealed that the ${it AAR3}$ gene encodes a protein with a domain of unknown function (DUF298), which has not previously been implicated in auxin signaling. The protein has a putative nuclear localization signal and shares homology with the DCN-1 protein through the DUF298 domain. The results also indicate that PCIB can facilitate the identification of factors involved in auxin or auxin-related signaling.

Journal Articles

A Small acidic protein 1 (SMAP1) mediates responses of the arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid

Rahman, A.*; Nakasone, Akari*; Chhun, T.*; Oura, Chiharu*; Biswas, K. K.*; Uchimiya, Hirofumi*; Tsurumi, Seiji*; Baskin, T. I.*; Tanaka, Atsushi; Ono, Yutaka

Plant Journal, 47(5), p.788 - 801, 2006/09

 Times Cited Count:33 Percentile:59.9(Plant Sciences)

2,4-D, a chemical analogue of IAA, is widely used as a growth regulator and exogenous source of auxin. It is believed that they share a common response pathway. Here, we show that a mutant, ${it antiauxin resistant1}$ (${it aar1}$) is resistant to 2,4-D, yet nevertheless responds like the wild type to IAA. That the ${it aar1}$ mutation alters 2,4-D responsiveness specifically was confirmed by analysis of GUS expression in the${it DR5:GUS}$ and ${it HS:AXR3NT-GUS}$ backgrounds, as well as by real-time PCR quantification of ${it IAA11}$ expression. Complementation and RNAi experiments identified a gene that confers 2,4-D responsiveness. The gene encodes a ${it small, acidic protein 1}$with unknown function and present in plants, animals, and invertebrates. These results suggest that SMAP1 is a regulatory component that mediates responses to 2,4-D and that responsiveness to 2,4-D and IAA are partially distinct.

Journal Articles

${it p}$-chlorophenoxyisobutyric acid impairs auxin response in arabidopsis root

Ono, Yutaka; Oura, Chiharu*; Rahman, A.; Aspuria, E. T.; Hayashi, Kenichiro*; Tanaka, Atsushi; Uchimiya, Hirofumi*

Plant Physiology, 133(3), p.1135 - 1147, 2003/11

 Times Cited Count:132 Percentile:92.45(Plant Sciences)

PCIB (${it p}$-chlorophenoxyisobutyric acid) is known as a putative antiauxin and is widely used to inhibit auxin action, although the mechanism of PCIB-mediated inhibition of auxin action is not characterized very well at molecular level. In the present work, we showed that PCIB inhibited BA::GUS expression induced by IAA, 2,4-D and NAA. PCIB also inhibited auxin dependent DR5::GUS expression. RNA hybridization and quantitative RT-PCR analyses suggested that PCIB reduced auxin-induced accumulation of transcripts of ${it Aux/IAA}$ genes. In addition, PCIB relieved the reduction of GUS activity in ${it HS::AXR3NT-GUS}$ transgenic line in which auxin inhibits GUS activity by promoting degradation of the AXR3NT-GUS fusion protein. Physiological analysis revealed that PCIB inhibited lateral root production, gravitropic response of roots and growth of primary roots. These results suggest that PCIB impairs auxin signaling pathway by regulating Aux/IAA protein stability, and thereby affects the auxin-regulated Arabidopsis root physiology.

Journal Articles

GFP accumulation controlled by an auxin-responsive promoter as a non-destructive assay to monitor early auxin response

Aspuria, E. T.; Oura, Chiharu*; Chen, Q.*; Uchimiya, Hirofumi; Ono, Yutaka

Plant Cell Reports, 21(1), p.52 - 57, 2002/07

 Times Cited Count:7 Percentile:17.54(Plant Sciences)

no abstracts in English

Journal Articles

Expression pattern of Aux/IAA genes in the iaa3/shy2-1D mutant of arabidopsis thaliana (L.)

Ono, Yutaka; Oura, Chiharu*; Uchimiya, Hirofumi

Annals of Botany, 89(1), p.77 - 82, 2002/01

 Times Cited Count:10 Percentile:24.54(Plant Sciences)

no abstracts in English

Journal Articles

Genetic screening of antiauxin mutants in ${{it Arabidopsis Thaliana}}$

Oura, Chiharu*; Aspuria, E. T.; Ono, Yutaka; Hase, Yoshihiro; Kobayashi, Yasuhiko; Uchimiya, Hirofumi

JAERI-Review 2001-039, TIARA Annual Report 2000, p.67 - 69, 2001/11

no abstracts in English

Journal Articles

Application of real-time RT-PCR quantification to evaluate differential expression of ${it arabidopsis Aux/IAA}$ genes

Liu, J.; Oura, Chiharu*; Aspuria, E. T.; Ono, Yutaka; Uchimiya, Hirofumi

Chinese Science Bulletin, 46(19), p.1642 - 1645, 2001/10

 Times Cited Count:1 Percentile:1.82(Multidisciplinary Sciences)

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1