Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 271

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Molecular geochemistry of radium; A key to understanding cation adsorption reaction on clay minerals

Yamaguchi, Akiko; Kurihara, Yuichi*; Nagata, Kojiro*; Tanaka, Kazuya; Higaki, Shogo*; Kobayashi, Toru; Tanida, Hajime; Ohara, Yoshiyuki*; Yokoyama, Keiichi; Yaita, Tsuyoshi; et al.

Journal of Colloid and Interface Science, 661, p.317 - 332, 2024/05

no abstracts in English

Journal Articles

Neutron transmission CB-KID imager using samples placed at room temperature

Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.

Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2023)

Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Fujita, Natsuko; Yokoyama, Tatsunori; Ogita, Yasuhiro; Fukuda, Shoma; Nakajima, Toru; Kagami, Saya; Ogata, Manabu; et al.

JAEA-Review 2023-017, 27 Pages, 2023/10

JAEA-Review-2023-017.pdf:0.94MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2023. The objectives and contents in fiscal year 2023 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2022

Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Ishihara, Takanori; Ogawa, Hiroki; Hakoiwa, Hiroaki; Watanabe, Tsuyoshi; Nishiyama, Nariaki; Yokoyama, Tatsunori; Ogata, Manabu; et al.

JAEA-Research 2023-005, 78 Pages, 2023/10

JAEA-Research-2023-005.pdf:6.51MB

This annual report documents the progress of research and development (R&D) in the 1st fiscal year of the Japan Atomic Energy Agency 4th Medium- and Long-term Plan (fiscal years 2022-2028) to provide the scientific base for assessing geosphere stability for long-term isolation of high-level radioactive waste. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

Journal Articles

Orientation mapping of YbSn$$_{3}$$ single crystals based on Bragg-dip analysis using a delay-line superconducting sensor

Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.

Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08

Journal Articles

Reaction of Np, Am, and Cm ions with CO$$_{2}$$ and O$$_{2}$$ in a reaction cell in triple quadrupole inductively coupled plasma mass spectrometry

Kazama, Hiroyuki; Konashi, Kenji*; Suzuki, Tatsuya*; Koyama, Shinichi; Maeda, Koji; Sekio, Yoshihiro; Onishi, Takashi; Abe, Chikage*; Shikamori, Yasuyuki*; Nagai, Yasuyoshi*

Journal of Analytical Atomic Spectrometry, 38(8), p.1676 - 1681, 2023/07

 Times Cited Count:0 Percentile:0.02

Journal Articles

Defect analysis of matrix damage in reactor pressure vessel steel using WB-STEM

Yoshida, Kenta*; Toyama, Takeshi*; Inoue, Koji*; Nagai, Yasuyoshi*; Shimodaira, Masaki

Materia, 62(3), p.154 - 158, 2023/03

no abstracts in English

Journal Articles

Progress of evaluation of beam coupling impedance reduction for the Eddy-current type septum magnet in J-PARC MR

Kobayashi, Aine*; Toyama, Takeshi*; Nakamura, Takeshi*; Shobuda, Yoshihiro; Ishii, Koji*; Tomizawa, Masahito*; Takeuchi, Yasunao*; Sato, Yoichi*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.19 - 23, 2023/01

In the J-PARC main ring, density modulation due to longitudinal beam instability occurs during the debunching process of coasting beams. This leads to the generation of an electron cloud, which in turn causes transverse beam instabilities. The transverse beam instability causes beam loss and the electron cloud is assumed to cause vacuum degradation, both of which hinder the beam intensity enhancement, so it is essential to clarify the causes and countermeasures. In particular, the longitudinal impedance of several hundred MHz has been investigated as relevant, and measures to reduce the impedance of individual devices are underway. The Eddy-current type septum magnet, newly installed this year, was found to have a large impedance by simulation. Therefore, we are investigating a method to reduce the impedance by a flange loaded with SiC radio wave absorber, which can be applied to locations where there is no spatial margin to install a taper. In this report, we will discuss the characterization of SiC to be used in actual devices, impedance simulation reflecting the results of SiC evaluation, and evaluation of the effect of impedance countermeasures by impedance measurement using the wire method, and progress in evaluating the effect on the beam by beam simulation and beam study.

JAEA Reports

Development of technologies for enhanced analysis accuracy of fuel debris; Summary results of the 2020 fiscal year (Subsidy program for the project of decommissioning and contaminated water management)

Ikeuchi, Hirotomo; Koyama, Shinichi; Osaka, Masahiko; Takano, Masahide; Nakamura, Satoshi; Onozawa, Atsushi; Sasaki, Shinji; Onishi, Takashi; Maeda, Koji; Kirishima, Akira*; et al.

JAEA-Technology 2022-021, 224 Pages, 2022/10

JAEA-Technology-2022-021.pdf:12.32MB

A set of technology, including acid dissolving, has to be established for the analysis of content of elements/nuclides in the fuel debris samples. In this project, a blind test was performed for the purpose of clarifying the current level of analytical accuracy and establishing the alternative methods in case that the insoluble residue remains. Overall composition of the simulated fuel debris (homogenized powder having a specific composition) were quantitatively determined in the four analytical institutions in Japan by using their own dissolving and analytical techniques. The merit and drawback for each technique were then evaluated, based on which a tentative flow of the analyses of fuel debris was constructed.

Journal Articles

Materials science and fuel technologies of uranium and plutonium mixed oxide

Kato, Masato; Machida, Masahiko; Hirooka, Shun; Nakamichi, Shinya; Ikusawa, Yoshihisa; Nakamura, Hiroki; Kobayashi, Keita; Ozawa, Takayuki; Maeda, Koji; Sasaki, Shinji; et al.

Materials Science and Fuel Technologies of Uranium and Plutonium mixed Oxide, 171 Pages, 2022/10

Innovative and advanced nuclear reactors using plutonium fuel has been developed in each country. In order to develop a new nuclear fuel, irradiation tests are indispensable, and it is necessary to demonstrate the performance and safety of nuclear fuels. If we can develop a technology that accurately simulates irradiation behavior as a technology that complements the irradiation test, the cost, time, and labor involved in nuclear fuel research and development will be greatly reduced. And safety and reliability can be significantly improved through simulation of nuclear fuel irradiation behavior. In order to evaluate the performance of nuclear fuel, it is necessary to know the physical and chemical properties of the fuel at high temperatures. And it is indispensable to develop a behavior model that describes various phenomena that occur during irradiation. In previous research and development, empirical methods with fitting parameters have been used in many parts of model development. However, empirical techniques can give very different results in areas where there is no data. Therefore, the purpose of this study is to construct a scientific descriptive model that can extrapolate the basic characteristics of fuel to the composition and temperature, and to develop an irradiation behavior analysis code to which the model is applied.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2022)

Sasao, Eiji; Ishimaru, Tsuneari; Niwa, Masakazu; Shimada, Akiomi; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.

JAEA-Review 2022-022, 29 Pages, 2022/09

JAEA-Review-2022-022.pdf:0.97MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2022. The objectives and contents in fiscal year 2022 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques

Journal Articles

Extended X-ray absorption fine structure spectroscopy measurements and ${it ab initio}$ molecular dynamics simulations reveal the hydration structure of the radium(II) ion

Yamaguchi, Akiko; Nagata, Kojiro*; Kobayashi, Keita; Tanaka, Kazuya; Kobayashi, Toru; Tanida, Hajime; Shimojo, Kojiro; Sekiguchi, Tetsuhiro; Kaneta, Yui; Matsuda, Shohei; et al.

iScience (Internet), 25(8), p.104763_1 - 104763_12, 2022/08

 Times Cited Count:3 Percentile:54.33(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Lanthanide extraction using a thiodiglycolamic acid extractant; Effect of S-donor on lanthanide separation

Shimojo, Kojiro; Fujiwara, Iori*; Oshima, Tatsuya*; Yokoyama, Keiichi; Yaita, Tsuyoshi

Analytical Sciences, 38(7), p.1003 - 1006, 2022/07

 Times Cited Count:0 Percentile:0(Chemistry, Analytical)

Liquid-liquid extraction of lanthanide (Ln) ions was investigated using $$N,N$$-dioctylthiodiglycolamic acid (DOTDGAA), which is a sulfur donor ligand with an amide group and a carboxyl group connected by a thioether chain. The extraction performance and selectivity of DOTDGAA for Ln ions were compared with those of $$N,N$$-dioctyldiglycolamic acid (DODGAA), which is also an oxygen donor ligand with a similar chemical structure, to assess the effect of the soft/hard donor atom on Ln separation. DOTDGAA quantitatively extracted all Ln ions while being selective toward light and middle Ln ions, in contrast to the selectivity of DODGAA for heavier Ln ions. Slope analysis demonstrated that the Ln$$^{3+}$$ transfer using DOTDGAA proceeded through a proton-exchange reaction, forming a 1:3 complex, Ln(DOTDGAA)$$_{3}$$. The back-extraction of Ln ions from the extracting phase was successfully achieved under acidic conditions.

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

Journal Articles

Impedance reduction by a SiC-loaded flange and its application to the J-PARC main ring septum magnet

Kobayashi, Aine*; Toyama, Takeshi*; Nakamura, Takeshi*; Shobuda, Yoshihiro; Ishi, Koji*

Nuclear Instruments and Methods in Physics Research A, 1031, p.166515_1 - 166515_12, 2022/05

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

The beam power of the main ring of the Japan Proton Accelerator Research Complex (J-PARC) is currently being increased. For high-power beam realization, it is essential to suppress the beam instability that limits the beam power and to estimate and enact countermeasures against the beam coupling impedance of individual devices. The fast-extraction (FX) septum magnet will be replaced with another magnet that copes with higher numbers of repetition cycles. Despite their different structures, both septa demonstrated a large impedance in estimates performed by the CST studio suite wake-field solver. The widely used taper impedance-reduction method would be effective but receives spatial constraints. By attaching a copper plate and SiC to the flange of the septum magnet, we could effectively reduce the impedance. The copper plate on the flange reduces the impedance below the cut-off frequency. Moreover, when SiC was loaded, the remaining impedance was three times lower than when using the copper plate alone. After applying this method to the new septum magnet, the maximum longitudinal impedance was reduced to 1% of the value without countermeasures, largely improving the beam stability condition. We also estimated the required thickness of SiC and the calorific value. This method saves space and is installed by simple attachment to the flange, regardless of the shape of the beam pipe. Therefore, it is also applicable to other devices.

Journal Articles

Marking actinides for separation; Resonance-enhanced multiphoton charge transfer in actinide complexes

Matsuda, Shohei; Yokoyama, Keiichi; Yaita, Tsuyoshi; Kobayashi, Toru; Kaneta, Yui; Simonnet, M.; Sekiguchi, Tetsuhiro; Honda, Mitsunori; Shimojo, Kojiro; Doi, Reisuke; et al.

Science Advances (Internet), 8(20), p.eabn1991_1 - eabn1991_11, 2022/05

 Times Cited Count:3 Percentile:54.33(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Investigation of hydration and adsorption structures on clay minerals of radium by EXAFS

Yamaguchi, Akiko; Nagata, Kojiro*; Tanaka, Kazuya; Kobayashi, Keita; Kobayashi, Toru; Shimojo, Kojiro; Tanida, Hajime; Sekiguchi, Tetsuhiro; Kaneta, Yui; Matsuda, Shohei; et al.

Hosha Kagaku, (45), p.28 - 30, 2022/03

no abstracts in English

Journal Articles

The Japan Health Physics Society Guideline on Dose Monitoring for the Lens of the Eye

Yokoyama, Sumi*; Tsujimura, Norio; Hashimoto, Makoto; Yoshitomi, Hiroshi; Kato, Masahiro*; Kurosawa, Tadahiro*; Tatsuzaki, Hideo*; Sekiguchi, Hiroshi*; Koguchi, Yasuhiro*; Ono, Koji*; et al.

Journal of Radiation Protection and Research, 47(1), p.1 - 7, 2022/03

Background: In Japan, new regulations that revise the dose limit for the lens of the eye (the lens), operational quantities, and measurement positions for the lens dose were enforced in April 2021. Based on the international safety standards, national guidelines, the results of the Radiation Safety Research Promotion Fund of the Nuclear Regulatory Authority, and other studies, the Working Group of Radiation Protection Standardization Committee, the Japan Health Physics Society (JHPS) developed a guideline for radiation dose monitoring for the lens. Materials and Methods: The Working Group of the JHPS discussed the criteria of non-uniform exposure and the management criteria set to not exceed the dose limit for the lens. Results and Discussion: In July 2020, the JHPS guideline was published. The guideline consists of three parts: main text, explanations, and 26 questions. In the questions, the corresponding answers were prepared, and specific examples were provided to enable similar cases to be addressed. Conclusion: With the development of guideline on radiation dose monitoring of the lens, radiation managers and workers will be able to smoothly comply with revised regulations and optimise radiation protection.

Journal Articles

Development of guidelines on radiation protection for the lens of the eye in Japan

Yokoyama, Sumi*; Iwai, Satoshi*; Tsujimura, Norio; Hashimoto, Makoto; Yoshitomi, Hiroshi; Kato, Masahiro*; Kurosawa, Tadahiro*; Tatsuzaki, Hideo*; Sekiguchi, Hiroshi*; Koguchi, Yasuhiro*; et al.

Proceedings of 15th International Congress of the International Radiation Protection Association (IRPA-15) (Internet), 8 Pages, 2022/00

Journal Articles

High spatial resolution neutron transmission imaging using a superconducting two-dimensional detector

Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; et al.

IEEE Transactions on Applied Superconductivity, 31(9), p.2400505_1 - 2400505_5, 2021/12

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

In this study, we employed a superconducting detector, current-biased kinetic-inductance detector (CB-KID) for neutron imaging using a pulsed neutron source. We employed the delay-line method, and high spatial resolution imaging with only four reading channels was achieved. We also performed wavelength-resolved neutron imaging by the time-of-flight method. We obtained the neutron transmission images of a Gd-Al alloy sample, inside which single crystals of GdAl$$_{3}$$ were grown, using the delay-line CB-KID. Single crystals were well imaged, in both shapes and distributions, throughout the Al-Gd alloy. We identified Gd nuclei via neutron transmissions that exhibited characteristic suppression above the neutron wavelength of 0.03 nm. In addition, the $$_{155}$$Gd resonance dip, a dip structure of the transmission caused by the nuclear reaction between an isotope and neutrons, was observed even when the number of events was summed over a limited area of 15 $$mu$$m $$times$$ 12 $$mu$$m. Gd selective imaging was performed using the resonance dip of $$_{155}$$Gd, and it showed clear Gd distribution even with a limited neutron wavelength range of 1 pm.

271 (Records 1-20 displayed on this page)