Refine your search:     
Report No.
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Electronic structure of a (3$$times$$3)-ordered silicon layer on Al(111)

Sato, Yusuke*; Fukaya, Yuki; Cameau, M.*; Kundu, A. K.*; Shiga, Daisuke*; Yukawa, Ryu*; Horiba, Koji*; Chen, C.-H.*; Huang, A.*; Jeng, H.-T.*; et al.

Physical Review Materials (Internet), 4(6), p.064005_1 - 064005_6, 2020/06

 Times Cited Count:0 Percentile:100(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Chemical misfit origin of solute strengthening in iron alloys

Wakeda, Masato*; Tsuru, Tomohito; Koyama, Masanori*; Ozaki, Taisuke*; Sawada, Hideaki*; Itakura, Mitsuhiro; Ogata, Shigenobu*

Acta Materialia, 131, p.445 - 456, 2017/06

 Times Cited Count:12 Percentile:25.04(Materials Science, Multidisciplinary)

Most of the solute species show a significant interaction with the dislocation core, while only several solute species among them, such as Si, P, and Cu, significantly lower the Peierls potential of the screw dislocation motion. A first-principles interaction energy with the "Easy-core" structure excellently correlates with the change in the $$gamma$$-surface caused by solute atoms (i.e., chemical misfit). We show the availability of the interaction energy to predict the effect of each species on macroscopic critical resolved shear stress (CRSS) of the dilute Fe alloy. The CRSS at low and high temperature for various alloys basically agree with experiment CRSS. These results provide a novel understanding of the interaction between a screw dislocation and solute species from the first-principles.

Journal Articles

First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron; Analysis of catalytic activity for the oxygen reduction reaction

Huang, S.-F.*; Terakura, Kiyoyuki*; Ozaki, Taisuke*; Ikeda, Takashi; Boero, M.*; Oshima, Masaharu*; Ozaki, Junichi*; Miyata, Seizo*

Physical Review B, 80(23), p.235410_1 - 235410_12, 2009/12

 Times Cited Count:149 Percentile:2.37(Materials Science, Multidisciplinary)

Recent studies suggest that the carbon-alloy catalyst with doped nitrogen may be a powerful candidate for cathode catalyst of fuel cell. In this paper, we aim to clarify the microscopic mechanisms of the enhancement in the catalyst activity caused by nitrogen doping using a simple graphene cluster model. We analyze modifications in the electronic structures and the energetical stability for some different configurations of N doping. We extend the analysis to the case of co-doping of nitrogen and boron and propose two possible scenarios explaining the further enhancement of catalytic activity by N and B co-doping.

Journal Articles

Progress in R&D efforts on the energy recovery linac in Japan

Sakanaka, Shogo*; Ago, Tomonori*; Enomoto, Atsushi*; Fukuda, Shigeki*; Furukawa, Kazuro*; Furuya, Takaaki*; Haga, Kaiichi*; Harada, Kentaro*; Hiramatsu, Shigenori*; Honda, Toru*; et al.

Proceedings of 11th European Particle Accelerator Conference (EPAC '08) (CD-ROM), p.205 - 207, 2008/06

Future synchrotron light sources based on the energy-recovery linacs (ERLs) are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. Our Japanese collaboration team is making efforts for realizing an ERL-based hard X-ray source. We report recent progress in our R&D efforts.

4 (Records 1-4 displayed on this page)
  • 1