Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sato, Yuki; Ozawa, Shingo*; Terasaka, Yuta; Minemoto, Kojiro*; Tamura, Satoshi*; Shingu, Kazutoshi*; Nemoto, Makoto*; Torii, Tatsuo
Journal of Nuclear Science and Technology, 57(6), p.734 - 744, 2020/06
Times Cited Count:25 Percentile:92.81(Nuclear Science & Technology)Iketani, Shotaro; Yokobori, Tomohiko; Ishikawa, Joji; Yasuhara, Toshiyuki*; Kozawa, Toshiyuki*; Takaizumi, Hirohide*; Momma, Takeshi*; Kurosawa, Shingo*; Iseda, Hirokatsu; Kishimoto, Katsumi; et al.
JAEA-Review 2018-016, 46 Pages, 2018/12
Japan Atomic Energy Agency (JAEA) adopts melting process for the waste processing and packaging method of radioactive miscellaneous solid waste in NSRI because melting process is effective in radioactivity evaluation, volume reduction, and stabilization treatment. Metal melting processing facilities, Incinerator, and Nonmetal melting processing facilities (hereinafter referred to as melting process facilities) have taken lots of safety measures, including measures for preventing the recurrence of the fire accidents. To exchange opinions and discuss the validity of these measures and so on with internal personnel and external experts, "Discussions on Melting Process Facilities" was held. As a document collection, this paper summarizes presentation materials of discussion meetings. Presentation materials describe "Outline of AVRF", "Safety measures in the melting facilities in WVRF", "Operation management of the melting facilities in WVRF", "Comparison of the past accident cases between facilities in and outside Japan and WVRF", and "Introduction of past accident cases and safety measures in other facilities from each committee".
Sato, Yuki; Terasaka, Yuta; Ozawa, Shingo*; Tanifuji, Yuta; Torii, Tatsuo
Journal of Instrumentation (Internet), 13(8), p.T08011_1 - T08011_10, 2018/08
Times Cited Count:7 Percentile:27.61(Instruments & Instrumentation)Sato, Yuki; Ozawa, Shingo*; Tanifuji, Yuta; Torii, Tatsuo
Journal of Instrumentation (Internet), 13(3), p.P03001_1 - P03001_8, 2018/03
Times Cited Count:7 Percentile:31.72(Instruments & Instrumentation)Sato, Yuki; Ozawa, Shingo*; Terasaka, Yuta; Kaburagi, Masaaki; Tanifuji, Yuta; Kawabata, Kuniaki; Miyamura, Hiroko; Izumi, Ryo*; Suzuki, Toshikazu*; Torii, Tatsuo
Journal of Nuclear Science and Technology, 55(1), p.90 - 96, 2018/01
Times Cited Count:46 Percentile:97.60(Nuclear Science & Technology)Sato, Yuki; Terasaka, Yuta; Ozawa, Shingo*; Miyamura, Hiroko; Kaburagi, Masaaki; Tanifuji, Yuta; Kawabata, Kuniaki; Torii, Tatsuo
Journal of Instrumentation (Internet), 12(11), p.C11007_1 - C11007_8, 2017/11
Times Cited Count:21 Percentile:63.51(Instruments & Instrumentation)Sato, Yuki; Kawabata, Kuniaki; Ozawa, Shingo*; Izumi, Ryo*; Kaburagi, Masaaki; Tanifuji, Yuta; Terasaka, Yuta; Miyamura, Hiroko; Kawamura, Takuma; Suzuki, Toshikazu*; et al.
IFAC-PapersOnLine, 50(1), p.1062 - 1066, 2017/07
Times Cited Count:4 Percentile:71.77(Automation & Control Systems)Ishihara, Keisuke; Kanazawa, Shingo; Kozawa, Masachiyo; Mori, Masakazu; Kawahara, Takahiro
JAEA-Technology 2017-002, 27 Pages, 2017/03
At radioactive waste management facilities in the Nuclear Science Research Institute, solid radioactive wastes are stored by using containers such as 200L drums and pallets to tier containers in 2 to 4 stacks in the height direction in waste storage facilities (Waste Storage Facility No.1, Waste Storage Facility No.2 and Waste Size Reduction and Storage Facility). On March 11, 2011, the Great East Japan Earthquake was happened, and some waste packages dropped from their pallets and large number of waste packages moved from their original position and inclined due to the influence of the earthquake in the waste storage facilities. There was no experience of rearrangement works to set those dropped and unbalanced waste packages in their original position and it was necessary to prepare detailed work procedures and progress for this task to prevent the occurrence of industrial accidents. Therefore, we prepared detailed work manual and repeatedly carried out mock-up test. And then, we started rearrangement work from April 2011 after confirmation of workers skill and adequacy of the work manual. Finally, all rearrangement works for stored waste packages took about four and half years and were completed in September 2015 without any accident and shutdown of storage function. This report summarizes the countermeasures to reduce exposure doses of workers and to prevent the occurrence of industrial accidents during the rearrangement works.
Ishihara, Keisuke; Yokota, Akira; Kanazawa, Shingo; Iketani, Shotaro; Sudo, Tomoyuki; Myodo, Masato; Irie, Hirobumi; Kato, Mitsugu; Iseda, Hirokatsu; Kishimoto, Katsumi; et al.
JAEA-Technology 2016-024, 108 Pages, 2016/12
Radioactive isotope, nuclear fuel material and radiation generators are utilized in research institutes, universities, hospitals, private enterprises, etc. As a result, various low-level radioactive wastes (hereinafter referred to as non-nuclear radioactive wastes) are produced. Disposal site for non-nuclear radioactive wastes have not been settled yet and those wastes are stored in storage facilities of each operator for a long period. The Advanced Volume Reduction Facilities (AVRF) are built to produce waste packages so that they satisfy requirements for shallow underground disposal. In the AVRF, low-level beta-gamma solid radioactive wastes produced in the Nuclear Science Research Institute are mainly treated. To produce waste packages meeting requirements for disposal safely and efficiently, it is necessary to cut large radioactive wastes into pieces of suitable size and segregate those depending on their types of material. This report summarizes activities of pretreatment to dispose of non-nuclear radioactive wastes in the AVRF.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06
Times Cited Count:191 Percentile:99.41(Physics, Nuclear)Transverse momentum distributions and yields for , and
in
collisions at
= 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different
collisions. We also present the scaling properties such as
and
scaling and discuss the mechanism of the particle production in
collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:10 Percentile:54.98(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to
collisions.
Ichimura, Makoto*; Higaki, Hiroyuki*; Kakimoto, Shingo*; Yamaguchi, Yusuke*; Nemoto, Kenju*; Katano, Makoto*; Kozawa, Isao*; Muro, Taishi*; Ishikawa, Masao; Moriyama, Shinichi; et al.
Fusion Science and Technology, 51(2T), p.150 - 153, 2007/02
Times Cited Count:1 Percentile:11.10(Nuclear Science & Technology)In magnetically confined plasmas, fluctuations in the ion cyclotron range of frequency (ICRF) will be driven by the presence of non-thermal ion energy distribution. In strong ICRF heating experiments on the GAMMA 10 tandem mirror, plasmas with a strong temperature anisotropy have been formed. Alfven-ion-cyclotron (AIC) modes are spontaneously excited due to strong temperature anisotropy. High-energy ions are trapped in the local mirror and will form the velocity distribution with the strong anisotropy. To study the relation among the AIC modes, ICEs and beam-driven electrostatic instabilities with non-thermal energy distribution is the main purpose of this work. When the NBs are injected, the magnetic fluctuations due to injected beams and FP ions are detected by ICRF antennas used as pickup loops on JT-60U. The wave excitation near ion cyclotron and its higer harmonic frequencies are studied experimentally and theoretically in plasmas with non-thermal ion energy distribution.
Yamashita, Kiyonobu; Nojiri, Naoki; Fujimoto, Nozomu; Nakano, Masaaki*; Ando, Hiroei; Nagao, Yoshiharu; Nagaya, Yasunobu; Akino, Fujiyoshi; Takeuchi, Mitsuo; Fujisaki, Shingo; et al.
Proc. of IAEA TCM on High Temperature Gas Cooled Reactor Applications and Future Prospects, p.185 - 197, 1998/00
no abstracts in English
Kanazawa, Shingo; Sudo, Tomoyuki; Komiya, Tomokazu; Hata, Katsuro; Nakamura, Masahiko; Kozawa, Masachiyo; Ohata, Kiyoshi; Nanko, Masayuki; Hoshino, Masato; Uchida, Shinichi; et al.
no journal, ,
JAEA is working the decontamination activity for the environmental remediation of Fukushima. In this activity, we support the decontamination activity for local governments to devise actually decontaminate. In this report, we show the decontamination effect of a house.
Sato, Yuki; Ozawa, Shingo*; Izumi, Ryo*; Terasaka, Yuta; Kaburagi, Masaaki; Miyamura, Hiroko; Kawamura, Takuma; Tanifuji, Yuta; Kawabata, Kuniaki; Suzuki, Toshikazu*; et al.
no journal, ,
no abstracts in English
Sato, Yuki; Ozawa, Shingo*; Terasaka, Yuta; Kaburagi, Masaaki; Miyamura, Hiroko; Tanifuji, Yuta; Kawabata, Kuniaki; Izumi, Ryo*; Suzuki, Toshikazu*; Torii, Tatsuo
no journal, ,
no abstracts in English
Tanabe, Kazuhiro*; Yanagihara, Satoshi*; Iguchi, Yukihiro; Awatani, Yuto; Saruta, Koji*; Narikawa, Isao*; Yanagida, Akihiro*; Ozawa, Shingo*; Oguri, Daiichiro*
no journal, ,
no abstracts in English
Sato, Yuki; Terasaka, Yuta; Kaburagi, Masaaki; Tanifuji, Yuta; Usami, Hiroshi; Miyamura, Hiroko; Ozawa, Shingo*; Izumi, Ryo*; Kawabata, Kuniaki; Suzuki, Toshikazu*; et al.
no journal, ,
Ozawa, Shingo*; Sato, Yuki; Terasaka, Yuta; Torii, Tatsuo; Shingu, Kazutoshi*; Suzuki, Toshikazu*
no journal, ,
no abstracts in English
Sato, Yuki; Ozawa, Shingo*; Tanifuji, Yuta; Torii, Tatsuo
no journal, ,
Terasaka, Yuta; Sato, Yuki; Kaburagi, Masaaki; Ozawa, Shingo*; Torii, Tatsuo
no journal, ,
no abstracts in English