Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ozeki, Hidemasa; Saito, Toru; Kawano, Katsumi; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Yamazaki, Toru; Isono, Takaaki
Physics Procedia, 67, p.1010 - 1015, 2015/07
Times Cited Count:0 Percentile:0Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya*; Devred, A.*; Vostner, A.*
Physics Procedia, 67, p.1016 - 1021, 2015/07
Times Cited Count:4 Percentile:81.22Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06
Times Cited Count:3 Percentile:21.2(Engineering, Electrical & Electronic)The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 NbSn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.
Nabara, Yoshihiro; Suwa, Tomone; Takahashi, Yoshikazu; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200305_1 - 4200305_5, 2015/06
Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)Ozeki, Hidemasa; Isono, Takaaki; Kawano, Katsumi; Saito, Toru; Kawasaki, Tsutomu; Nishino, Katsumi; Okuno, Kiyoshi; Kido, Shuichi*; Semba, Tomoyuki*; Suzuki, Yozo*; et al.
IEEE Transactions on Applied Superconductivity, 25(3), p.4200804_1 - 4200804_4, 2015/06
Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Suwa, Tomone; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; et al.
IEEE Transactions on Applied Superconductivity, 24(3), p.6000605_1 - 6000605_5, 2014/06
Times Cited Count:7 Percentile:40.9(Engineering, Electrical & Electronic)no abstracts in English
Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Teshima, Osamu*; Matsunami, Masahiro*
IEEE Transactions on Applied Superconductivity, 24(3), p.4800604_1 - 4800604_4, 2014/06
Times Cited Count:15 Percentile:62.08(Engineering, Electrical & Electronic)Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.
IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06
Times Cited Count:22 Percentile:72.23(Engineering, Electrical & Electronic)Japan Atomic Energy Agency (JAEA) is procuring all amounts of NbSn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.
Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Takahashi, Yoshikazu; Matsui, Kunihiro; Koizumi, Norikiyo; et al.
IEEE Transactions on Applied Superconductivity, 23(3), p.4801604_1 - 4801604_4, 2013/06
Times Cited Count:10 Percentile:49.2(Engineering, Electrical & Electronic)no abstracts in English
Ozeki, Hidemasa; Hamada, Kazuya; Nunoya, Yoshihiko; Kawano, Katsumi; Takahashi, Yoshikazu; Oshikiri, Masayuki; Saito, Toru; Matsunami, Masahiro*; Teshima, Osamu*
no journal, ,
no abstracts in English
Nabara, Yoshihiro; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Koizumi, Norikiyo; Tsutsumi, Fumiaki; et al.
no journal, ,
no abstracts in English
Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Uno, Yasuhiro; Shibutani, Kazuyuki*; et al.
no journal, ,
Japan Atomic Energy Agency (JAEA) is procuring all amounts of NbSn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.
Ozeki, Hidemasa; Hamada, Kazuya; Takahashi, Yoshikazu; Nunoya, Yoshihiko; Kawano, Katsumi; Oshikiri, Masayuki; Saito, Toru; Isono, Takaaki; Teshima, Osamu*; Matsunami, Masahiro*
no journal, ,
no abstracts in English
Nabara, Yoshihiro; Suwa, Tomone; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; et al.
no journal, ,
no abstracts in English
Takahashi, Yoshikazu; Nabara, Yoshihiro; Nunoya, Yoshihiko; Suwa, Tomone; Tsutsumi, Fumiaki; Oshikiri, Masayuki; Ozeki, Hidemasa; Shibutani, Kazuyuki*; Kawano, Katsumi; Kawasaki, Tsutomu*; et al.
no journal, ,
Japan Atomic Energy Agency (JAEA) is procuring all amounts of NbSn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The cable with a shorter twist pitch shows no degradation of Tcs against to electromagnetic load cycles. However, it is difficult to make the cable, because the diameter of the cable with shorter twist pitch is larger and the cable has to compact more. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies and production will be described in this paper.
Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Nunoya, Yoshihiko; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Takamura, Jun; Shibutani, Kazuyuki*; Chuheishi, Shinji; et al.
no journal, ,
The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 NbSn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.
Isono, Takaaki; Kawano, Katsumi; Ozeki, Hidemasa; Sato, Minoru; Saito, Toru; Nishino, Katsumi
no journal, ,
Japan Atomic Energy Agency (JAEA) has fabricated a test coil to evaluate superconducting performance of the conductor used for Central Solenoid (CS) of the International Thermonuclear Experimental Reactor (ITER) system. The coil is a 9-turn single layer solenoid coil with a 1.5-m diameter and will be inserted and tested in the Central Solenoid Model Coil (CSMC) test facility in JAEA. The conductor is cable-in-conduit type and has a square shape of 49 mm. The cable is composed of 576 NbSn strands and 288 copper strands. The conductor will be operated at 13-T magnetic field and 40 kA operating current. Fabrication sequence of the coil is; (1) winding of 1.5 m diameter, (2) fabrication of terminals, (3) heat treatment to generate superconductor, (4) turn insulation, (5) ground insulation, (6) assemble of structures and (7) installation of instruments. Before fabrication of the coil, trial coil was fabricated using a dummy conductor to demonstrate fabrication procedure. Fabrication results of trial and the test coil will be presented.
Nabara, Yoshihiro; Suwa, Tomone; Hemmi, Tsutomu; Kajitani, Hideki; Ozeki, Hidemasa; Sakurai, Takeru; Iguchi, Masahide; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; et al.
no journal, ,
no abstracts in English
Ozeki, Hidemasa; Isono, Takaaki; Kawano, Katsumi; Saito, Toru; Kawasaki, Tsutomu; Nishino, Katsumi; Okuno, Kiyoshi; Kido, Shuichi*; Semba, Tomoyuki*; Suzuki, Yozo*; et al.
no journal, ,
no abstracts in English
Nabara, Yoshihiro; Suwa, Tomone; Ozeki, Hidemasa; Sakurai, Takeru; Kajitani, Hideki; Iguchi, Masahide; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; et al.
no journal, ,
no abstracts in English