Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nishiuchi, Mamiko; Choi, I. W.*; Daido, Hiroyuki; Nakamura, Tatsufumi*; Pirozhkov, A. S.; Yogo, Akifumi*; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; Daito, Izuru*; et al.
Plasma Physics and Controlled Fusion, 57(2), p.025001_1 - 025001_9, 2015/02
Times Cited Count:3 Percentile:12.82(Physics, Fluids & Plasmas)Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of 20 micron meter and
10 micron meter diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration.
Choi, I. W.*; Kim, I. J.*; Pae, K. H.*; Nam, K. H.*; Lee, C.-L.*; Yun, H.*; Kim, H. T.*; Lee, S. K.*; Yu, T. J.*; Sung, J. H.*; et al.
Applied Physics Letters, 99(18), p.181501_1 - 181501_3, 2011/11
Times Cited Count:17 Percentile:56.46(Physics, Applied)We report the manufacturing of a thin foil target made of conjugated polymer, and the simultaneous observation of laser accelerated ions and second harmonic radiation, when irradiated with ultrahigh-contrast laser pulse at a maximum intensity of 410
W/cm
. Maximum proton energy of 8 MeV is achieved along the target normal direction. Strong second harmonic with over 6% energy ratio compared to fundamental is emitted along the specular direction. Two-dimensional particle-in-cell simulations confirm the simultaneous generation of protons and high-order harmonics, which demonstrates the feasibility of applications requiring particle and radiation sources at once, effectively using the same laser and target.
Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Orimo, Satoshi; Ogura, Koichi; Ma, J.-L.; Sagisaka, Akito; Mori, Michiaki; Pirozhkov, A. S.; Kiriyama, Hiromitsu; et al.
Physics of Plasmas, 15(5), p.053104_1 - 053104_10, 2008/05
Times Cited Count:46 Percentile:83.76(Physics, Fluids & Plasmas)High-flux energetic protons whose maximum energies are up to 4 MeV are generated by an intense femtosecond Titanium Sapphire laser pulse interacting with a 7.5, 12.5, and 25m thick Polyimide tape targets. The laser pulse energy is 1.7 J, duration is 34 fs, and intensity is 3
10
Wcm
. The amplified spontaneous emission (ASE) has the intensity contrast ratio of 4
10
. The conversion efficiency from laser energy into proton kinetic energies of
3% is achieved, which is comparable or even higher than those achieved in the previous works with nanometer-thick targets and the ultrahigh contrast laser pulses (
10
).
Sagisaka, Akito; Pirozhkov, A. S.; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Yogo, Akifumi; Daito, Izuru; Nishiuchi, Mamiko; Mori, Michiaki; Nashima, Shigeki*; et al.
no journal, ,
no abstracts in English
Nishiuchi, Mamiko; Daito, Izuru; Ikegami, Masahiro; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; Ma, J.*; et al.
no journal, ,
A laser-driven proton beam with a maximum energy of a few MeV is stably obtained using an ultra-short and high-intensity Titanium Sapphire laser. As compared with the proton beam from the conventional accelerator, this proton beam exhibits peculiar characteristics, such as, more than 10 protons per bunch are produced within a short pulse duration of
ps at a source, resulting in a very high peak current. It also exhibits a very low transverse emittance. The proton beam has a divergence angle of
10 degrees and energy spread of
100%. It accompanies electrons and X-rays, which is produced simultaneously. Making the best use of these peculiar characteristics, many possible applications of the laser-driven proton are proposed. In order to make practical laser-driven proton beam for the applications, we carry out series of experiments. We have successfully obtained simultaneous imaging of the target with proton and X-ray or proton and electron beams. In the course of practical use of the proton beam for specific applications, characteristics above should be optimized based on the variations of the applications. For example, in order to apply the laser-driven proton beam for the proton irradiation system, such as used in the medical or the industrial applications, we should obtain focused or parallel proton beam. One of our plans to alter the orbits of the laser-driven protons from the planer tape target is using permanent quadrupole magnets.