Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Okita, Hidefumi; Tamura, Fumihiko; Yamamoto, Masanobu; Nomura, Masahiro; Shimada, Taihei; Yoshii, Masahito*; Omori, Chihiro*; Sugiyama, Yasuyuki*; Hasegawa, Katsushi*; Hara, Keigo*; et al.
Journal of Physics; Conference Series, 2420, p.012092_1 - 012092_6, 2023/01
A power upgrade of existing 8 kW solid-state driver amplifier is required for the acceleration of high intensity proton beams on the J-PARC 3 GeV rapid cycling synchrotron. The development of a 25 kW amplifier with gallium nitride (GaN) HEMTs, based on 6.4 kW modules is on going. The combiner is a key component to achieve such a high output power over the wide bandwidth required for multi-harmonic rf operation. This paper presents preliminary design of the combiner. The circuit simulation setup and results, including the realistic magnetic core characteristics and frequency response of the cable are reported.
Tamura, Fumihiko; Omori, Chihiro*; Yoshii, Masahito*; Hasegawa, Katsushi*; Paoluzzi, M.*
Proceedings of 5th International Particle Accelerator Conference (IPAC '14) (Internet), p.3385 - 3387, 2014/07
In the framework of the LHC Injectors Upgrade project (LIU), a complete replacement of the existing narrow-band rf systems of CERN PS with wide-band magnetic alloy (MA) loaded rf systems is in progress. A single gap MA loaded rf system prototype, which uses solid-state power amplifier and includes fast rf feedback for beam loading compensation, has been installed in the J-PARC MR to investigate the system behavior with high intensity proton beams. We report the wake voltage measurement results with and without fast rf feedback. In addition to the fast feedback, the rf feed forward method is under consideration to compensate the heavy beam loading more effectively. Preliminary beam test results with feed forward are also presented.