Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Zhang, M. M.*; Tian, Y. L.*; Wang, Y. S.*; Zhang, Z. Y.*; Gan, Z. G.*; Yang, H. B.*; Huang, M. H.*; Ma, L.*; Yang, C. L.*; Wang, J. G.*; et al.
Physical Review C, 106(2), p.024305_1 - 024305_6, 2022/08
Times Cited Count:4 Percentile:46.68(Physics, Nuclear)Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.
Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01
Times Cited Count:12 Percentile:74.96(Astronomy & Astrophysics)Wu, P.*; Zhang, B.*; Peng, K. L.*; Hagiwara, Masayuki*; Ishikawa, Yoshihisa*; Kofu, Maiko; Lee, S. H.*; Kumigashira, Hiroshi*; Hu, C. S.*; Qi, Z. M.*; et al.
Physical Review B, 98(9), p.094305_1 - 094305_7, 2018/09
Times Cited Count:13 Percentile:50.04(Materials Science, Multidisciplinary)Using angle-resolved photoemission spectroscopy and inelastic neutron scattering, we have studied how electronic structures and lattice dynamics evolve with temperature in Na-doped SnSe.
Yu, Q.*; Qi, L.*; Tsuru, Tomohito; Traylor, R.*; Rugg, D.*; Morris, J. W. Jr.*; Asta, M.*; Chrzan, D. C.*; Minor, A. M.*
Science, 347(6222), p.635 - 639, 2015/02
Times Cited Count:284 Percentile:98.51(Multidisciplinary Sciences)Given that solute atoms interact weakly with the long-range elastic fields of screw dislocations, it has long been accepted that solution hardening is only marginally effective in materials with mobile screw dislocations. This accepted wisdom has recently been questioned by first-principles calculations suggesting that solutes may interact much more strongly with the screw dislocation core. We report here the results of a combined experimental and computational study undertaken to elucidate the profound hardening effect of oxygen in pure hexagonally-close-packed structured -Ti. High resolution and in situ transmission electron microscopy nanomechanical characterization establish that the strengthening is due to the strong interaction between oxygen and the core of screw dislocations that mainly glide on prismatic planes. First-principles calculations of the screw dislocation core reveal a simple crystallographic source for the oxygen-dislocation interaction that is consistent with experimental observations. The distortion of the interstitial sites at the dislocation core creates a very strong but short-range repulsion for oxygen atoms. These mechanisms effectively pin the dislocation near the oxygen interstitial. These results establish a highly effective mechanism for strengthening by interstitial solutes that, contrary to prior understanding, may be significant in many structural alloys.
Andreyev, A. N.*; Huyse, M.*; Van Duppen, P.*; Qi, C.*; Liotta, R. J.*; Antalic, S.*; Ackermann, D.*; Franchoo, S.*; Heberger, F. P.*; Hofmann, S.*; et al.
Physical Review Letters, 110(24), p.242502_1 - 242502_5, 2013/06
Times Cited Count:93 Percentile:93.47(Physics, Multidisciplinary)Yoshida, Kazuki; Qi, C.*
no journal, ,
In -decaying nuclei, the
formation amplitude and the penetrability are important factors to determine its decay halflife. In this research, by utilizing the
knockout reaction, which is known to be a good probe for the
clustering in light nuclei, we aim to investigate the
formation amplitude of
decaying nuclei, independent from the decaying process and the penetrability. We also discuss a relationship between an
formation amplitude and the knockout cross section and its momentum distribution.