Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Brunet, M.*; Podolyk, Zs.*; Berry, T. A.*; Brown, B. A.*; Carroll, R. J.*; Lica, R.*; Sotty, Ch.*; Andreyev, A. N.; Borge, M. J. G.*; Cubiss, J. G.*; et al.
Physical Review C, 103(5), p.054327_1 - 054327_13, 2021/05
Times Cited Count:2 Percentile:47.5(Physics, Nuclear)Wrzosek-Lipska, K.*; Rezynkina, K.*; Bree, N.*; Zieliska, M.*; Gaffney, L. P.*; Petts, A.*; Andreyev, A. N.; Bastin, B.*; Bender, M.*; Blazhev, A.*; et al.
European Physical Journal A, 55(8), p.130_1 - 130_23, 2019/08
Times Cited Count:10 Percentile:77.08(Physics, Nuclear)Gillespie, S. A.*; Andreyev, A. N.; Al Monthery, M.*; Barton, C. J.*; Antalic, S.*; Auranen, K.*; Badran, H.*; Cox, D.*; Cubiss, J. G.*; O'Donnell, D.*; et al.
Physical Review C, 99(6), p.064310_1 - 064310_6, 2019/06
Times Cited Count:3 Percentile:37.62(Physics, Nuclear)Berry, T. A.*; Podolyk, Zs.*; Carroll, R. J.*; Lic
, R.*; Grawe, H.*; Timofeyuk, N. K.*; Alexander, T.*; Andreyev, A. N.; Ansari, S.*; Borge, M. J. G.*; et al.
Physics Letters B, 793, p.271 - 275, 2019/06
Times Cited Count:4 Percentile:46.54(Astronomy & Astrophysics)Mller-Gatermann, C.*; Dewald, A.*; Fransen, C.*; Auranen, K.*; Badran, H.*; Beckers, M.*; Blazhev, A.*; Braunroth, T.*; Cullen, D. M.*; Fruet, G.*; et al.
Physical Review C, 99(5), p.054325_1 - 054325_7, 2019/05
Times Cited Count:6 Percentile:60.44(Physics, Nuclear)no abstracts in English
Lic, R.*; Rotaru, F.*; Borge, M. J. G.*; Gr
vy, S.*; Negoita, F.*; Poves, A.*; Sorlin, O.*; Andreyev, A. N.; Borcea, R.*; Costache, C.*; et al.
Physical Review C, 95(2), p.021301_1 - 021301_6, 2017/02
Times Cited Count:14 Percentile:77.03(Physics, Nuclear)Konki, J.*; Khuyagbaatar, J.*; Uusitalo, J.*; Greenlees, P. T.*; Auranen, K.*; Badran, H.*; Block, M.*; Briselet, R.*; Cox, D. M.*; Dasgupta, M.*; et al.
Physics Letters B, 764, p.265 - 270, 2017/01
Times Cited Count:17 Percentile:81.89(Astronomy & Astrophysics)Lund, M. V.*; Andreyev, A. N.; Borge, M. J. G.*; Cederkll, J.*; De Witte, H.*; Fraile, L. M.*; Fynbo, H. O. U.*; Greenlees, P. T.*; Harkness-Brennan, L. J.*; Howard, A. M.*; et al.
European Physical Journal A, 52(10), p.304_1 - 304_14, 2016/10
Times Cited Count:16 Percentile:76.6(Physics, Nuclear)Lic, R.*; Mach, H.*; Fraile, L. M.*; Gargano, A.*; Borge, M. J. G.*; M
rginean, N.*; Sotty, C. O.*; Vedia, V.*; Andreyev, A. N.; Benzoni, G.*; et al.
Physical Review C, 93(4), p.044303_1 - 044303_7, 2016/04
Times Cited Count:5 Percentile:41.5(Physics, Nuclear)Gaffney, L. P.*; Robinson, A. P.*; Jenkins, D. G.*; Andreyev, A. N.; Bender, M.*; Blazhev, A.*; Bree, N.*; Bruyneel, B.*; Butler, P.*; Cocolios, T. E.*; et al.
Physical Review C, 91(6), p.064313_1 - 064313_11, 2015/06
Times Cited Count:8 Percentile:52.89(Physics, Nuclear)Rubert, J.*; Dorvaux, O.*; Gall, B. J. P.*; Greenlees, P. T.*; Asfari, Z.*; Piot, J.*; Andersson, L. L.*; Asai, Masato; Cox, D. M.*; Dechery, F.*; et al.
Journal of Physics; Conference Series, 420, p.012010_1 - 012010_10, 2013/03
Times Cited Count:0 Percentile:0.04The first prompt in-beam -ray spectroscopy of a superheavy element,
Rf, has been performed successfully. A development of an intense isotopically enriched
Ti beam using the MIVOC method enabled us to perform this experiment. A rotational band up to a spin of 20
has been discovered in
Rf, and its moment of inertia has been extracted. These data suggest that there is no evidence of a significant deformed shell gap at
= 104.
Greenlees, P. T.*; Rubert, J.*; Piot, J.*; Gall, B. J. P.*; Andersson, L. L.*; Asai, Masato; Asfari, Z.*; Cox, D. M.*; Dechery, F.*; Dorvaux, O.*; et al.
Physical Review Letters, 109(1), p.012501_1 - 012501_5, 2012/07
Times Cited Count:54 Percentile:88.44(Physics, Multidisciplinary)Rotational band structure of the =104 nucleus
Rf has been observed for the first time using an in-beam
-ray spectroscopic technique. This nucleus is the heaviest among the nuclei whose rotational band structure has ever been observed. Thus, the present result provides valuable information on the single-particle shell structure and pairing interaction in the heaviest extreme of nuclei. The deduced moment of inertia indicates that there is no deformed shell gap at
=104, which is predicted in a number of current self-consistent mean-field models.