Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

ITER magnet systems; From qualification to full scale construction

Nakajima, Hideo; Hemmi, Tsutomu; Iguchi, Masahide; Nabara, Yoshihiro; Matsui, Kunihiro; Chida, Yutaka; Kajitani, Hideki; Takano, Katsutoshi; Isono, Takaaki; Koizumi, Norikiyo; et al.

Proceedings of 24th IAEA Fusion Energy Conference (FEC 2012) (CD-ROM), 8 Pages, 2013/03

The ITER organization and 6 Domestic Agencies (DA) have been implementing the construction of ITER superconducting magnet systems. Four DAs have already started full scale construction of Toroidal Field (TF) coil conductors. The qualification of the radial plate manufacture has been completed, and JA and EU are ready for full scale construction. JA has qualified full manufacturing processes of the winding pack with a 1/3 prototype and made 2 full scale mock-ups of the basic segments of TF coil structure to optimize and industrialize the manufacturing process. Preparation and qualification of the full scale construction of the TF coil winding is underway by EU. Procurement of the manufacturing equipment is near completion and qualification of manufacturing processes has already started. The constructions of other components of the ITER magnet systems are also going well towards the main goal of the first plasma in 2020.

Journal Articles

Installation and test programme of the ITER poloidal field conductor insert (PFCI) in the ITER test facility at JAEA Naka

Nunoya, Yoshihiko; Takahashi, Yoshikazu; Hamada, Kazuya; Isono, Takaaki; Matsui, Kunihiro; Oshikiri, Masayuki; Nabara, Yoshihiro; Hemmi, Tsutomu; Nakajima, Hideo; Kawano, Katsumi; et al.

IEEE Transactions on Applied Superconductivity, 19(3), p.1492 - 1495, 2009/06

 Times Cited Count:1 Percentile:86.75(Engineering, Electrical & Electronic)

The ITER Poloidal Field Conductor Insert (PFCI) was constructed to characterize the performance of selected cable-in-conduit NbTi conductors for the ITER Poloidal Field (PF) under relevant operating conditions. The PFCI was installed and tested inside the bore of the ITER CS model coil, which provides the background magnetic field. The PFCI is a single-layer solenoid, wound from about 50 m of a full-size ITER cable-in-conduit conductor. The winding diameter and height are about 1.5 m and 1 m, respectively. The nominal design current of the conductor is 45 kA at 6 T and 5 K. The main items in the PFCI test programme are current sharing temperature (Tcs) measurements, critical current (Ic) measurements and AC loss measurement. The key technology of the installation, the test methods and procedures, and some preliminary results of the testing campaigns are described and discussed in this paper.

Journal Articles

Implications of NbTi short-sample test results and analysis for the ITER Poloidal Field Conductor Insert (PFCI)

Zanino, R.*; Bagnasco, M.*; Baker, W.*; Bellina, F.*; Bruzzone, P.*; della Corte, A.*; Ilyin, Y.*; Martovetsky, N.*; Mitchell, N.*; Muzzi, L.*; et al.

IEEE Transactions on Applied Superconductivity, 16(2), p.886 - 889, 2006/06

 Times Cited Count:7 Percentile:56.62(Engineering, Electrical & Electronic)

As the test of the PFCI is foreseen at JAERI Naka, Japan, it is essential to consider in detail the lessons learned from the short NbTi sample tests, as well as the issues left open after them, in order to develop a suitable test program of the PFCI aimed at bridging the extrapolation gap between measured strand and future PF coil performance. Here we consider in particular the following issues: (1) the actual possibility to quench the PFCI conductor in the TCS tests before quenching the intermediate joint, (2) the question of the so-called sudden or premature quench, based on SULTAN sample results, applying a recently developed multi-solid and multi-channel extension of the Mithrandir code to a short sample analysis; (3) the feasibility of the AC losses calorimetry in the PFCI. These results show that Tcs measurement and the calorimetric measurement of AC losses will be carried out successfully. However, we need further analytic works for the problem of the sudden quench.

3 (Records 1-3 displayed on this page)
  • 1