Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fusion reaction $$^{48}$$Ca+$$^{249}$$Bk leading to formation of the element Ts (Z=117)

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review C, 99(5), p.054306_1 - 054306_16, 2019/05

AA2019-0039.pdf:5.03MB

 Times Cited Count:10 Percentile:88.51(Physics, Nuclear)

We have performed an experiment to synthesize the element 117 (Ts) with the $$^{48}$$Ca+$$^{249}$$Bk fusion reaction. Four $$alpha$$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $$alpha$$ decay of $$^{294}$$Ts. The other two were short decay chains which are consistent with the one originating from the $$alpha$$ decay of $$^{293}$$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.

Journal Articles

First ionization potentials of Fm, Md, No, and Lr; Verification of filling-up of 5f electrons and confirmation of the actinide series

Sato, Tetsuya; Asai, Masato; Borschevsky, A.*; Beerwerth, R.*; Kaneya, Yusuke*; Makii, Hiroyuki; Mitsukai, Akina*; Nagame, Yuichiro; Osa, Akihiko; Toyoshima, Atsushi; et al.

Journal of the American Chemical Society, 140(44), p.14609 - 14613, 2018/11

 Times Cited Count:16 Percentile:70.21(Chemistry, Multidisciplinary)

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

Journal Articles

First ionization potential of the heaviest actinide lawrencium, element 103

Sato, Tetsuya; Asai, Masato; Borschevsky, A.*; Stora, T.*; Sato, Nozomi*; Kaneya, Yusuke; Tsukada, Kazuaki; D$"u$llmann, C. E.*; Eberhardt, K.*; Eliav, E.*; et al.

EPJ Web of Conferences, 131, p.05001_1 - 05001_6, 2016/12

 Times Cited Count:0 Percentile:0.9

Ionization efficiency in a surface ionization process depends on the first ionization potential of the atom. Based on the dependence, the ionization potential of the atom can be determined. We measured ionization efficiencies of fermium, einsteinium, mendelevium, and lawrencium by using a newly developed gas-jet coupled surface ion-source. The ionization potential of the elements have not been determined so far due to their low production rates and/or their short half-lives. Based on a relationship between the ionization efficiency and the ionization potential obtained via measurements of short-lived lanthanide isotopes, the ionization potentials of these actinide elements have been successfully determined.

Journal Articles

Measurement of the first ionization potential of lawrencium, element 103

Sato, Tetsuya; Asai, Masato; Borschevsky, A.*; Stora, T.*; Sato, Nozomi; Kaneya, Yusuke; Tsukada, Kazuaki; D$"u$llmann, Ch. E.*; Eberhardt, K.*; Eliav, E.*; et al.

Nature, 520(7546), p.209 - 211, 2015/04

 Times Cited Count:89 Percentile:98.03(Multidisciplinary Sciences)

Ionization efficiency in a surface ionization process depends on the first ionization potential of the atom. Based on the dependence, the ionization potential of the atom can be determined. We successfully measured ionization efficiencies of lawrencium (Lr, $$Z$$=103) using a gas-jet coupled surface ion-source. The ionization potential of Lr has not been determined owing to its low production rate and its short half-life. Based on a relationship between the ionization efficiency and the ionization potential obtained via measurements of short-lived lanthanide isotopes, the ionization potential of Lr was determined.

Journal Articles

$$^{48}$$Ca + $$^{249}$$Bk fusion reaction leading to element Z = 117; Long-lived $$alpha$$-decaying $$^{270}$$Db and discovery of $$^{266}$$Lr

Khuyagbaatar, J.*; Yakushev, A.*; D$"u$llmann, Ch. E.*; Ackermann, D.*; Andersson, L.-L.*; Asai, Masato; Block, M.*; Boll, R. A.*; Brand, H.*; Cox, D. M.*; et al.

Physical Review Letters, 112(17), p.172501_1 - 172501_5, 2014/05

 Times Cited Count:175 Percentile:98.72(Physics, Multidisciplinary)

The superheavy element with atomic number 117 was produced in the $$^{48}$$Ca + $$^{249}$$Bk fusion reaction using the gas-filled recoil separator TASCA at GSI in Germany. This result verified the previous result of the discovery of new element 117 reported by Flerov Laboratory of Nuclear Reactions in Russia, which makes certain the synthesis and discovery of element 117 in human history. On the other hand, the last nucleus in the $$alpha$$ decay chain from the element 117 was assigned to be the unknown nucleus $$^{266}$$Lr instead of the previously reported $$^{270}$$Db, and $$^{270}$$Db was found to be the $$alpha$$-decaying nucleus with very long half-life.

Oral presentation

The First successful determination of the first ionization potential of lawrencium (Lr, $$Z = 103$$)

Sato, Tetsuya; Asai, Masato; Sato, Nozomi; Kaneya, Yusuke; Toyoshima, Atsushi; Miyashita, Sunao*; Oe, Kazuhiro*; Osa, Akihiko; Ichikawa, Shinichi; Nagame, Yuichiro; et al.

no journal, , 

The first ionization potential of the heaviest actinide elements have not been measured until today owing to short half-lives and low production rate of the isotopes. Based on the surface ionization technique, we performed a measurement of the ionization potential of the heaviest actinide element, lawrencium (Lr, $$Z = 103$$), by using a newly developed surface ion-source installed to the JAEA-ISOL (Isotope Separator On-Line) at the JAEA tandem accelerator facility. We report on an evaluation of the IP value of Lr based on comparison of ionization behavior of short-lived lanthanide isotopes and $$^{256}$$Lr on Ta surface at several temperature in the ion-source.

Oral presentation

The First ionization potential measurement of lawrencium (Lr, $$Z$$ = 103)

Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke; Tsukada, Kazuaki; Toyoshima, Atsushi; Miyashita, Sunao*; Oe, Kazuhiro*; Osa, Akihiko; Ichikawa, Shinichi; Nagame, Yuichiro; et al.

no journal, , 

The first ionization potentials of the heaviest actinide elements have not been measured until today owing to short half-lives and low production rates of the isotopes. Based on the surface ionization technique, we performed a measurement of the ionization potential of the heaviest actinide element, lawrencium (Lr, $$Z$$ = 103), by using a newly developed surface ion-source installed to the JAEA-ISOL (Isotope Separator On-Line) at the JAEA tandem accelerator facility. We report on an evaluation of the IP value of Lr based on comparison of ionization behavior of $$^{256}$$Lr with that of short-lived lanthanide isotopes on Ta surface at several temperature.

Oral presentation

Measurement of the ionization potential of Lr (Z = 103) by online mass separation

Sato, Tetsuya; Stora, T.*; Asai, Masato; Borschevsky, A.*; Kaneya, Yusuke; Tsukada, Kazuaki; D$"u$llmann, Ch. E.*; Eliav, E.*; Kaldor, U.*; Kratz, J. V.*; et al.

no journal, , 

It is known that an ionization efficiency of an element in surface ionization process depends on temperature, work function of the surface, and the first ionization energy of the atom of the element to be ionized. We determined the first ionization energy of lawrencium (Lr), the last member of the actinide series, using the relationship between the ionization efficiency and the ionization energy. The ionization energy of Lr had not been measured owing to its low production rate and short half-lives so far. The experimental value of the ionization energy is in good agreement of the theoretical one which was calculated using the state-of-the-art relativistic calculation.

Oral presentation

First ionization potentials of heavy actinides

Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Takeda, Shinsaku*; Vascon, A.*; Sakama, Minoru*; Sato, Daisuke*; et al.

no journal, , 

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

Oral presentation

First ionization energies of heavy actinides

Nagame, Yuichiro; Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Makii, Hiroyuki; Mitsukai, Akina; Osa, Akihiko; Sch$"a$del, M.*; Toyoshima, Atsushi; Tsukada, Kazuaki; et al.

no journal, , 

Oral presentation

Measurements of the first ionization potentials of heavy actinides

Sato, Tetsuya; Asai, Masato; Kaneya, Yusuke*; Tsukada, Kazuaki; Toyoshima, Atsushi; Mitsukai, Akina*; Takeda, Shinsaku*; Vascon, A.*; Sakama, Minoru*; Sato, Daisuke*; et al.

no journal, , 

The first ionization potential (IP$$_1$$) yields information on valence electronic structure of an atom. IP$$_1$$ values of heavy actinides beyond einsteinium (Es, Z = 99), however, have not been determined experimentally so far due to the difficulty in obtaining these elements on scales of more than one atom at a time. Recently, we successfully measured IP$$_1$$ of lawrencium (Lr, Z = 103) using a surface ionization method. The result suggests that Lr has a loosely-bound electron in the outermost orbital. In contrast to Lr, nobelium (No, Z = 102) is expected to have the highest IP$$_1$$ among the actinide elements owing to its full-filled 5f and the 7s orbitals. In the present study, we have successfully determined IP$$_1$$ values of No as well as fermium (Fm, Z = 100) and mendelevium (Md, Z = 101) using the surface ionization method. The obtained results indicate that the IP$$_1$$ value of heavy actinoids would increase monotonically with filling electrons up in the 5f orbital like heavy lanthanoids.

11 (Records 1-11 displayed on this page)
  • 1