Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takagi, Hirotaka*; Takagi, Rina*; Minami, Susumu*; Nomoto, Takuya*; Oishi, Kazuki*; Suzuki, Michito*; Yanagi, Yuki*; Hirayama, Motoaki*; Khanh, N.*; Karube, Kosuke*; et al.
Nature Physics, 19(7), p.961 - 968, 2023/07
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Takagi, Rina*; Matsuyama, Naofumi*; Ukleev, V.*; Yu, L.*; White, J. S.*; Francoual, S.*; Mardegan, J. R. L.*; Hayami, Satoru*; Saito, Hiraku*; Kaneko, Koji; et al.
Nature Communications (Internet), 13, p.1472_1 - 1472_7, 2022/03
Times Cited Count:32 Percentile:99.54(Multidisciplinary Sciences)Ozeki, Kazuhide*; Yonemura, Masao*; Masuzawa, Toru*; Saito, Hidetoshi*; Ogoe, Yasuharu*; Hirakuri, Kenji*; Takeda, Masayasu
no journal, ,
Hydrogen content in the DLC film is very important factor because it greatly influences on its mechanical properties and microstructure such as hardness, wear resistance, surface roughness, and sp3/sp2 ratio. In the present study, we prepared the DLC film using plasma CVD technique varying H/CH
ratio from 0 to 9. Cross-sectional hydrogen content and mass density profiles of the films were defined by neutron and X-ray reflectivity measurements, and the results were compared with that from ERDA analysis. And O/C atomic ratio of the oxide layer of the film surface was also analyzed using XPS. From the neutron and X-ray reflectivity analysis, hydrogen content and mass density in the DLC film increased with film depth from the surface, and average hydrogen content showed more than 30 % in all films. By combining with XPS results, it is clarified that hydrogen content in the surface layer was lower than that in bulk layer.
Watanabe, Masao; Nakajima, Taro*; Inamura, Yasuhiro; Matsui, Kazuki*; Kanda, Tomoki*; Nomoto, Tetsuya*; Oishi, Kazuki*; Kawamura, Yukihiko*; Saito, Hiraku*; Tamatsukuri, Hiromu; et al.
no journal, ,
In recent years, due to advances in precision measurement technology in pulsed magnetic fields, a novel magnetic state was discovered in a strong magnetic field. We constructed a measurement environment that can comprehensively explore the reciprocal lattice space under magnetic fields up to 14 Tesla by combining the long-pulse magnetic field generated by the supercapacitor and pulsed neutrons at J-PARC. This equipment can generate a magnetic field that is sufficiently longer than the time width (about 10 milliseconds) of the multi-wavelength neutron pulse passing through the sample. This method was used to investigate the magnetic phase transition in the frustrated magnet CuFeO.