Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ito, Daisuke*; Sato, Hirotaka*; Odaira, Naoya*; Saito, Yasushi*; Parker, J. D.*; Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi
Journal of Nuclear Materials, 569, p.153921_1 - 153921_6, 2022/10
Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)Yamamoto, Seishiro*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Imaizumi, Yuya; Matsuba, Kenichi; Kamiyama, Kenji
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 4 Pages, 2022/10
Torikawa, Tomoaki*; Odaira, Naoya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Matsushita, Kentaro; Ezure, Toshiki; Tanaka, Masaaki
Konsoryu, 36(1), p.63 - 69, 2022/03
On free surface of a sodium cooled fast reactor, gas entrainment can be caused by free surface vortices, which may result in disturbance in core power. It is important to develop an evaluation model to predict accurately entrained gas flow rate. In this study, entrained gas flow rate a simple gas entrainment experiment is conducted with focusing on effect of pressure difference between upper and lower tanks. Pressure difference between upper and lower tanks are controlled by changing gas pressure in lower tank. As a result, it is confirmed that the entrained gas flow rate increases with increasing pressure difference between upper and lower tanks. By visualization of swirling annular flow in suction pipe, it is also observed that pressure drop in suction pipe increases with increase in entrained gas flow rate, which implies that entrained gas flow rate can be predicted by evaluation model based on pressure drop in swirling annular flow region.
Ariyoshi, Gen; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*
JPS Conference Proceedings (Internet), 33, p.011044_1 - 011044_6, 2021/03
Sonnenschein, V.*; Tsuji, Yoshiyuki*; Kokuryu, Shoma*; Kubo, Wataru*; Suzuki, So*; Tomita, Hideki*; Kiyanagi, Yoshiaki*; Iguchi, Tetsuo*; Matsushita, Taku*; Wada, Nobuo*; et al.
Review of Scientific Instruments, 91(3), p.033318_1 - 033318_12, 2020/03
Times Cited Count:0 Percentile:0(Instruments & Instrumentation)Oba, Yojiro; Ito, Daisuke*; Saito, Yasushi*; Onodera, Yohei*; Parker, J. D.*; Shinohara, Takenao; Oikawa, Kenichi
Materials Research Proceedings, Vol.15, p.160 - 164, 2020/02
Lead Bismuth eutectic (LBE) is a promising candidate of the coolant for accelerator driven system (ADS) and fast breeder reactor. Neutron transmission imaging is a powerful technique to investigate the LBE in flow channel. However, previous studies have focused on the analysis of the neutron transmission spectra due to Bragg diffraction (Bragg edge transmission) from the solid phase of the LBE. If the neutron transmission spectra due to the diffraction from a liquid phase can be observed, it is useful to study the behavior of the molten LBE in the flow channel. Therefore, the energy-resolved neutron transmission imaging measurements of the molten LBE was carried out. The observed neutron transmission spectra can be explained by those calculated from the scattering profiles of the molten LBE. This indicates that the structure of the molten LBE can be characterized and mapped using the neutron transmission imaging.
Ito, Kei*; Ito, Daisuke*; Saito, Yasushi*; Ezure, Toshiki; Matsushita, Kentaro; Tanaka, Masaaki; Imai, Yasutomo*
Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.6632 - 6642, 2019/08
In this paper, a mechanistic model is proposed to calculate the entrained gas flow rate by a free surface vortex. The model contains the theoretical equation of transient gas core elongation and the empirical equation of critical gas core length for gas bubble detachment. Based on those two equations, the entrained gas flow rate is calculated as the portion of the gas core elongated beyond the critical gas core length per unit time. Then, the mechanistic model was applied to the calculation of the entrained gas flow rate in a simple water experiment. As a result, it is confirmed that the entrained gas flow rate grows rapidly when the liquid (water) flow rate, which determine the strength of a free surface vortex, exceeds a certain threshold value.
Ito, Daisuke*; Kurisaki, Tatsuya*; Ito, Kei*; Saito, Yasushi*; Imaizumi, Yuya; Matsuba, Kenichi; Kamiyama, Kenji
Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.6430 - 6439, 2019/08
In core disruptive accident of sodium-cooled fast reactor, cooling of residual fuel debris formed in the reactor core is one of important factors to achieve in-vessel retention of the fuel. To clarify the feasibility of the cooling which is called "in-place cooling", characteristics of gas-liquid two-phase flow in the debris bed must be well understood. Since the debris bed can be formed in a confined flow channel in the core, effect of the channel wall cannot be neglected. Thus, this study aims to clarify the effect of the wall on two-phase flow characteristics in the debris bed, which was simulated as a particle bed packed in a pipe. The pressure drop was measured and compared with results by previous models, and porosity and void fraction distributions were measured by X-ray radiography. Then, the pressure drop evaluation model was modified considering the wall effect, and the applicability of the models was discussed.
Kurisaki, Tatsuya*; Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Imaizumi, Yuya; Matsuba, Kenichi; Kamiyama, Kenji
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 3 Pages, 2018/11
In the evaluation of the in-place cooling which is for the residual core materials in the severe accident of sodium-cooled fast reactors, pressure loss of two-phase flow in debris bed is one of the important factors. Although Lipinski model is already proposed for the pressure loss evaluation, the accuracy would decrease when the porosity is not homogeneous. Thus, experiment to measure the pressure loss in a packed bed of non-homogeneous porosity distribution was conducted, and the Lipinski model was modified dividing the cross section to evaluate the pressure loss in it. As a result, it was confirmed that agreement of the experimental values with the values by modified Lipinski model was better than that with the original Lipinski model.
Ito, Daisuke*; Ito, Kei*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Matsuba, Kenichi; Kamiyama, Kenji
Nuclear Engineering and Design, 334, p.90 - 95, 2018/08
Times Cited Count:6 Percentile:60.34(Nuclear Science & Technology)Two-phase flow through porous media must be well understood to develop a severe accident analysis code not only for light water reactor but also sodium-cooled fast reactor. When a core disruptive accident occurs in sodium-cooled fast reactor, the fuel inside the core become melted and interacts with the coolant. As a result, gas-liquid two-phase flow will be formed in the debris bed, which may have porous nature depending on the cooling process. In such condition, the local porosity and its distribution are very important to characterize two-phase flow field in the porous media. In this study, X-ray radiography was applied to measure the local porosity in the packed bed of spheres. The radial profiles were estimated from the chordal profiles measured by the X-ray method and compared with the previous porosity model. In addition, the void fraction radial profiles were also obtained in air-water two-phase flow.
Ito, Daisuke*; Rivera, M. N.*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Suzuki, Toru*
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 10 Pages, 2017/09
Nava, M.*; Ito, Daisuke*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Suzuki, Toru*
Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 5 Pages, 2017/07
Ito, Daisuke*; Nava, M.*; Saito, Yasushi*; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Suzuki, Toru*
Proceedings of 2017 Japan-US Seminar on Two-Phase Flow Dynamics (JUS 2017), 4 Pages, 2017/06
Sako, Hiroyuki; Harada, Hiroyuki; Sakaguchi, Takao*; Chujo, Tatsuya*; Esumi, Shinichi*; Gunji, Taku*; Hasegawa, Shoichi; Hwang, S.; Ichikawa, Yudai; Imai, Kenichi; et al.
Nuclear Physics A, 956, p.850 - 853, 2016/12
Times Cited Count:11 Percentile:66.25(Physics, Nuclear)Saito, Hiroshi; Sato, Yasushi*; Sakamoto, Atsushi*; Torikai, Kazuyoshi; Fukushima, Shigeru; Sakao, Ryota; Taki, Tomihiro
JAEA-Technology 2015-063, 119 Pages, 2016/03
Ningyo-toge Environmental Engineering Center has been conducting environmental remediation of the Ningyo-toge Uranium Mine, after decades of mine-related activities were terminated. Its purposes are to take measures to ensure safety and radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. As part of the remediation, upstream part of the Yotsugi Mill Tailings Pond, the highest prioritized facility, has been remediated to fiscal year 2012. Multi-layered capping has been constructed using natural material, after specifications and whole procedure being examined in terms of long-term stability, radiation protection, economics, etc. Monitoring has been carried out to confirm the effectiveness of the capping, in terms of settlement, dose and radon exhalation rates, etc. Monitoring of drainage volume of penetrated rainwater is planned. Accumulated data will be examined and used for remediation of downstream part of the Pond.
Takahashi, Nobuaki*; Murata, Hirohiko*; Mitsubori, Hitoshi*; Sakuraba, Junji*; Soga, Tomohiro*; Aoki, Yasushi*; Kato, Takanori*; Saito, Yuichi; Yamada, Keisuke; Ikenaga, Noriaki*; et al.
Review of Scientific Instruments, 85(2), p.02C306_1 - 02C306_3, 2014/02
Times Cited Count:2 Percentile:11.99(Instruments & Instrumentation)Fukushima, Shigeru; Taki, Tomihiro; Saito, Hiroshi; Torikai, Kazuyoshi; Sato, Yasushi*
Nihon Chikasui Gakkai 2013-Nen Shuki Koenkai Koen Yoshi, p.258 - 263, 2013/10
no abstracts in English
Iikura, Hiroshi; Tsutsui, Noriaki*; Saito, Yasushi*; Nojima, Takehiro; Yasuda, Ryo; Sakai, Takuro; Matsubayashi, Masahito
Physics Procedia, 43, p.161 - 168, 2013/00
Times Cited Count:4 Percentile:84.6Odaka, Hirokazu*; Ichinohe, Yuto*; Takeda, Shinichiro*; Fukuyama, Taro*; Hagino, Koichi*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; Watanabe, Shin*; Kokubun, Motohide*; et al.
Nuclear Instruments and Methods in Physics Research A, 695, p.179 - 183, 2012/12
Times Cited Count:22 Percentile:84.81(Instruments & Instrumentation)We have developed a new Si/CdTe semiconductor double-sided strip detector (DSD) Compton camera. The camera consists of a 500-m-thick Si-DSD and four layers of 750-
m-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250
m. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5 degrees at 356 keV and 3.5 degrees at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.
Takeda, Shinichiro*; Ichinohe, Yuto*; Hagino, Koichi*; Odaka, Hirokazu*; Yuasa, Takayuki*; Ishikawa, Shinnosuke*; Fukuyama, Taro*; Saito, Shinya*; Sato, Tamotsu*; Sato, Goro*; et al.
Physics Procedia, 37, p.859 - 866, 2012/10
Times Cited Count:21 Percentile:98.52By using new Compton camera consisting of silicon double-sided strip detector (Si-DSD) and CdTe-DSD developed for the ASTRO-H mission, an experiment was conducted to study its feasibility for advanced hotspot monitoring. In addition to hotspot imaging already provided by commercial imaging systems, the identification of the variety of radioisotopes is realized thanks to the good energy resolution given by the semiconductor detectors. Three radioisotopes of Ba (356 keV),
Na (511 keV) and
Cs (662 keV) were individually imaged by applying event selection in the energy window and the
-ray images was correctly overlapped by an optical picture. The detection efficiency of 1.68
10
(effective area: 1.7
10
cm
) and angular resolution of 3.8
were obtained by stacking five detector modules for 662 keV
-ray. The higher detection efficiency required in a specific use can be achieved by stacking more detector modules.