Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Behavior of entrainment droplet formed by high velocity air jet flow in stagnant water

Akabane, Masaaki*; Horiki, Sachiyo*; Osakabe, Masahiro*; Koizumi, Yasuo; Uchibori, Akihiro; Ohno, Shuji; Ohshima, Hiroyuki

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05

Behavior of liquid droplets in a high-velocity gaseous jet was experimentally investigated to provide validation data for the evaluation method of sodium-water reaction phenomenon. The visualization experiment on the entrained liquid droplets in the air jet submerged in a water pool was carried out. Filament-like wisps from the wavy gas-liquid interface were observed. The wisps were broken off and entrained into the air jet. The velocity of the entrained liquid droplets was estimated from an image processing. The axial velocity of the liquid droplets increased as the air inlet velocity increased. Acceleration behavior of the liquid droplets was also confirmed quantitatively.

Oral presentation

Monoenergetic hard X-ray emission from carbon-nanotube-array coated targets with femtosecond laser pulses

Okano, Yasuaki*; Nishikino, Masaharu; Nakahara, Shogo*; Tokita, Shigeki*; Masuno, Shinichiro*; Hashida, Masaki*; Sakabe, Shuji*; Nakano, Hidetoshi*; Kawachi, Tetsuya; Nishimura, Hiroaki*; et al.

no journal, , 

The generation of monoenergetic hard X-rays more than 10 keV has attracted much attention for X-ray imaging in the field of high density physics and biomedical applications. Our group is currently developing an X-ray microbeam system to study radiobiological effects of cells as fundamental study of radiation therapy. In such applications, improvement of conversion efficiency (CE) from the driving laser to X-rays is an important issue and some approaches for efficient X-ray generation up to several keV have been proposed so far using low density, surface-structured targets, such as porous metals, velvet targets, and carbon nanotubes (CNTs), with the concepts of improvement of the laser absorption efficiency. In this work, we investigated the yields of K-alpha emission from bare and aligned CNT-array coated metal targets to take baseline data aiming to improve the CE in hard X-ray region (multi-keV to tens of keV) by adapting such kind of method.

2 (Records 1-2 displayed on this page)
  • 1