Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tomioka, Dai; Kochiyama, Mami; Ozone, Kenji; Nakata, Hisakazu; Sakai, Akihiro
JAEA-Technology 2024-023, 38 Pages, 2025/03
Japan Atomic Energy Agency is an implementing organization of near-surface disposal for low-level radioactive wastes generated from research, industrial and medical facilities in Japan. Information on the radioactivity concentration of these radioactive wastes is dispensable for the design and conformity assessment of the waste disposal facilities for the licensing application of the disposal project and its safety review. Radioactive Wastes Disposal Center has been improving the radioactivity evaluation procedure for the dismantling waste generated from the research reactors based on the activation calculation. In order to investigate the applicability of the ORIGEN code (included in SCALE6.2.4), which enables more accurate activation calculations using multigroup neutron spectra, we performed activation calculations with the ORIGEN-code and the ORIGEN-S code (included in SCALE6.0), which has been widely used in the past, for the dismantled wastes from the Rikkyo University Research Reactor, where radioactivity analysis data for the structural materials around the reactor core were compiled. As a result, the calculation time difference between ORIGEN and ORIGEN-S was small and the evaluated radioactivity concentrations of the former were in the range of 0.8-1.0 times those of the latter, which was in good agreement with those of radiochemical analysis in the range of 0.5-3.0 times. The applicability of ORIGEN was confirmed. In addition, activation calculations assuming trace elements in structural materials of nuclear reactor were performed with ORIGEN and ORIGEN-S and the results were compared. The causes of the large differences among 170 nuclides that are important for dose assessment in near-surface disposal were assessed each nuclide.
Lee, D. H.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Nuclear Instruments and Methods in Physics Research A, 1072, p.170216_1 - 170216_6, 2025/03
Times Cited Count:2 Percentile:94.02(Instruments & Instrumentation)Okuizumi, Mao*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Hirota, Katsuya*; Ino, Takashi*; Ishizaki, Kohei*; Kimura, Atsushi; Kitaguchi, Masaaki*; Koga, Jun*; et al.
Physical Review C, 111(3), p.034611_1 - 034611_6, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Nuclear)Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; Suzuya, Kentaro; et al.
Progress of Theoretical and Experimental Physics (Internet), 2025(2), p.023H02_1 - 023H02_8, 2025/02
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Marzec, E.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Physical Review Letters, 134, p.081801_1 - 081801_9, 2025/00
Times Cited Count:0Lee, D. H.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
European Physical Journal C, 84, p.409_1 - 409_6, 2024/04
Times Cited Count:1 Percentile:41.24(Physics, Particles & Fields)Okudaira, Takuya*; Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.044606_1 - 044606_9, 2024/04
Times Cited Count:2 Percentile:78.45(Physics, Nuclear)Nakabe, Rintaro*; Auton, C. J.*; Endo, Shunsuke; Fujioka, Hiroyuki*; Gudkov, V.*; Hirota, Katsuya*; Ide, Ikuo*; Ino, Takashi*; Ishikado, Motoyuki*; Kambara, Wataru*; et al.
Physical Review C, 109(4), p.L041602_1 - L041602_4, 2024/04
Times Cited Count:1 Percentile:23.17(Physics, Nuclear)Kamiya, Junichiro; Oi, Motoki; Kobayashi, Fuminori; Sakai, Kenji; Yamada, Ippei
Vacuum and Surface Science, 67(4), p.186 - 191, 2024/04
This report describes the usage, specification, troubles and countermeasures of dry pumps in the Japan Proton Accelerator Research Complex (J-PARC). In J-PARC, while dry scroll pumps (DSP) are widely used, many are being replaced with roots pumps due to frequent maintenance and troubles of DSP. Some of the facilities use roots pumps with special specifications, such as radiation-resistant specifications, separate power supply, and with diaphragm type, etc. Although some problems have occurred with both DSPs and roots pumps, they have been addressed by revising maintenance methods and improving parts, contributing to stable operation for users.
Shin, C. D.*; Dodo, Taku; Haga, Katsuhiro; Harada, Masahide; Hasegawa, Shoichi; Kasugai, Yoshimi; Kinoshita, Hidetaka; Masuda, Shiho; Meigo, Shinichiro; Sakai, Kenji; et al.
Journal of Instrumentation (Internet), 18(12), p.T12001_1 - T12001_9, 2023/12
Times Cited Count:0 Percentile:0.00(Instruments & Instrumentation)Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Opletal, P.; Tokiwa, Yoshifumi; Haga, Yoshinori; Kitagawa, Shunsaku*; Ishida, Kenji*; Aoki, Dai*; Knebel, G.*; et al.
Physical Review Letters, 131(22), p.226503_1 - 226503_7, 2023/12
Times Cited Count:11 Percentile:85.32(Physics, Multidisciplinary)Kinjo, Katsuki*; Fujibayashi, Hiroki*; Matsumura, Hiroki*; Hori, Fumiya*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; et al.
Science Advances (Internet), 9(30), p.2736_1 - 2736_6, 2023/07
Times Cited Count:14 Percentile:88.25(Multidisciplinary Sciences)Matsumura, Hiroki*; Fujibayashi, Hiroki*; Kinjo, Katsuki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; et al.
Journal of the Physical Society of Japan, 92(6), p.063701_1 - 063701_5, 2023/05
Times Cited Count:36 Percentile:98.12(Physics, Multidisciplinary)Fujibayashi, Hiroki*; Kinjo, Katsuki*; Nakamine, Genki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; et al.
Journal of the Physical Society of Japan, 92(5), p.053702_1 - 053702_5, 2023/05
Times Cited Count:7 Percentile:77.36(Physics, Multidisciplinary)Okudaira, Takuya*; Tani, Yuika*; Endo, Shunsuke; Doskow, J.*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kameda, Kento*; Kimura, Atsushi; Kitaguchi, Masaaki*; Luxnat, M.*; et al.
Physical Review C, 107(5), p.054602_1 - 054602_7, 2023/05
Times Cited Count:5 Percentile:76.15(Physics, Nuclear)no abstracts in English
Tokunaga, Yo; Sakai, Hironori; Kitagawa, Shunsaku*; Ishida, Kenji*
Nihon Butsuri Gakkai-Shi, 78(5), p.267 - 272, 2023/04
no abstracts in English
Kinjo, Katsuki*; Fujibayashi, Hiroki*; Kitagawa, Shunsaku*; Ishida, Kenji*; Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Nakamura, Ai*; Shimizu, Yusei*; Homma, Yoshiya*; et al.
Physical Review B, 107(6), p.L060502_1 - L060502_5, 2023/02
Times Cited Count:21 Percentile:92.66(Materials Science, Multidisciplinary)Endo, Shunsuke; Okudaira, Takuya*; Abe, Ryota*; Fujioka, Hiroyuki*; Hirota, Katsuya*; Kimura, Atsushi; Kitaguchi, Masaaki*; Oku, Takayuki; Sakai, Kenji; Shima, Tatsushi*; et al.
Physical Review C, 106(6), p.064601_1 - 064601_7, 2022/12
Times Cited Count:7 Percentile:72.81(Physics, Nuclear)no abstracts in English
Matsushita, Hatsuki*; Kobayashi, Ren*; Sakai, Takaaki*; Kato, Shinya; Matsuba, Kenichi; Kamiyama, Kenji
Proceedings of 13th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Operation and Safety (NUTHOS-13) (Internet), 9 Pages, 2022/09
During core disruptive accidents in sodium-cooled fast reactors, the molten core material flows through flow channels, such as the control rod guide tubes, into the core inlet plenum under the core region. The molten core material can be cooled and solidified while impinging on a horizontal plate of the inlet plenum in a sodium coolant. However, the solidification and cooling behaviors of molten core materials impinged on a horizontal structure have not been sufficiently studied thus far. Notably, this is an important phenomenon that needs to be elucidated from the perspective of improving the safety of sodium-cooled fast reactors. Accordingly, a series of experiments on discharging a simulated molten core material (alumina: AlO
) into a sodium coolant on a horizontal structure was conducted at the experimental facility of the National Nuclear Center of the Republic of Kazakhstan. In this study, analyses on the sodium experiments using SIMMER-III as the fast reactor safety evaluation code were performed. The analysis methods were validated by comparing the results and experiment data. In addition, the cooling and solidification behaviors during jet impingement were evaluated. The results indicated that the molten core material exhibited fragmentation owing to the impingement on the horizontal plate and was, therefore, scattered toward the periphery. Furthermore, the simulated molten core material was evaluated to be cooled by sodium and subsequently solidified.
Tabata, Chihiro; Shirasaki, Kenji*; Sakai, Hironori; Sunaga, Ayaki*; Li, D.*; Konaka, Mariko*; Yamamura, Tomoo*
CrystEngComm (Internet), 24(19), p.3637 - 3648, 2022/05
Times Cited Count:2 Percentile:30.55(Chemistry, Multidisciplinary)