Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nakanishi, Takumi*; Hori, Yuta*; Shigeta, Yasuteru*; Sato, Hiroyasu*; Kiyanagi, Ryoji; Munakata, Koji*; Ohara, Takashi; Okazawa, Atsushi*; Shimada, Rintaro*; Sakamoto, Akira*; et al.
Journal of the American Chemical Society, 145(35), p.19177 - 19181, 2023/08
Times Cited Count:2 Percentile:38.77(Chemistry, Multidisciplinary)Sawada, Atsushi; Sakamoto, Kazuhiko*; Watahiki, Takanori*; Imai, Hisashi*
SKB P-17-06, 154 Pages, 2023/08
Nonaka, Yosuke*; Wakabayashi, Yuki*; Shibata, Goro; Sakamoto, Shoya*; Ikeda, Keisuke*; Chi, Z.*; Wan, Y.*; Suzuki, Masahiro*; Tanaka, Arata*; Tanaka, Masaaki*; et al.
Physical Review Materials (Internet), 7(4), p.044413_1 - 044413_10, 2023/04
Times Cited Count:3 Percentile:37.82(Materials Science, Multidisciplinary)Hirata, Sakiko*; Kusaka, Ryoji; Meiji, Shogo*; Tamekuni, Seita*; Okudera, Kosuke*; Hamada, Shoken*; Sakamoto, Chihiro*; Honda, Takumi*; Matsushita, Kosuke*; Muramatsu, Satoru*; et al.
Inorganic Chemistry, 62(1), p.474 - 486, 2023/01
Times Cited Count:1 Percentile:11.67(Chemistry, Inorganic & Nuclear)Verma, V.*; Sakamoto, Shoya*; Ishikawa, Koichiro*; Singh, V. R.*; Ishigami, Keisuke*; Shibata, Goro; Kadono, Toshiharu*; Koide, Tsuneharu*; Kuroda, Shinji*; Fujimori, Atsushi*
Physica B; Condensed Matter, 642, p.414129_1 - 414129_5, 2022/10
Times Cited Count:5 Percentile:46.34(Physics, Condensed Matter)Sano, Yuichi; Sakamoto, Atsushi; Miyazaki, Yasunori; Watanabe, So; Morita, Keisuke; Emori, Tatsuya; Ban, Yasutoshi; Arai, Tsuyoshi*; Nakatani, Kiyoharu*; Matsuura, Haruaki*; et al.
Proceedings of International Conference on Nuclear Fuel Cycle; Sustainable Energy Beyond the Pandemic (GLOBAL 2022) (Internet), 4 Pages, 2022/07
We developed a hybrid MA(III) recovery process combining MA(III)+Ln(III) co-recovery flowsheet by solvent extraction with TBP and MA(III)/Ln(III) separation flowsheet by simulated moving bed chromatography using HONTA impregnated adsorbents with large particle size porous silica support.
Suzuki, Hakuto*; Zhao, G.*; Okamoto, Jun*; Sakamoto, Shoya*; Chen, Z.-Y.*; Nonaka, Yosuke*; Shibata, Goro; Zhao, K.*; Chen, B.*; Wu, W.-B.*; et al.
Journal of the Physical Society of Japan, 91(6), p.064710_1 - 064710_5, 2022/06
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Nakagawa, Akinori; Oyokawa, Atsushi; Murakami, Masashi; Yoshida, Yukihiko; Sasaki, Toshiki; Okada, Shota; Nakata, Hisakazu; Sugaya, Toshikatsu; Sakai, Akihiro; Sakamoto, Yoshiaki
JAEA-Technology 2021-006, 186 Pages, 2021/06
Radioactive wastes generated from R&D activities have been stored in Japan Atomic Energy Agency. In order to reduce the risk of taking long time to process legacy wastes, countermeasures for acceleration of waste processing and disposal were studied. Work analysis of waste processing showed bottleneck processes, such as evaluation of radioactivity concentration, segregation of hazardous and combustibles materials. Concerning evaluation of radioactivity concentration, a radiological characterization method using a scaling factor and a nondestructive gamma-ray measurement should be developed. The number of radionuclides that are to be selected for the safety assessment of the trench type disposal facility can decrease using artificial barriers. Hazardous materials, will be identified using records and nondestructive inspection. The waste identified as hazardous will be unpacked and segregated. Preliminary calculations of waste acceptance criteria of hazardous material concentrations were conducted based on environmental standards in groundwater. The total volume of the combustibles will be evaluated using nondestructive inspection. The waste that does not comply with the waste acceptance criteria should be mixed with low combustible material waste such as dismantling concrete waste in order to satisfy the waste acceptance criteria on a disposal facility average. It was estimated that segregation throughput of compressed waste should be increased about 5 times more than conventional method by applying the countermeasures. Further study and technology development will be conducted to realize the plan.
Sakamoto, Atsushi; Kibe, Satoshi*; Kawanobe, Kazunori*; Fujisaku, Kazuhiko*; Sano, Yuichi; Takeuchi, Masayuki; Suzuki, Hideya*; Tsubata, Yasuhiro; Ban, Yasutoshi; Matsumura, Tatsuro
JAEA-Research 2021-003, 30 Pages, 2021/06
Japan Atomic Energy Agency has been developing a solvent extraction process called SELECT to recover minor actinides (MA) from spent nuclear fuel. In the SELECT process, TDdDGA, HONTA, and ADAAM are used as the extractants for MA + Ln corecovery, MA/Ln separation and Am/Cm separation, respectively. These extractants do not contain phosphorus (P), and consist of carbon (C), hydrogen (H), oxygen (O), and nitrogen (N). In this study, in order to give beneficial information for designing flowsheet, the mass transfer coefficients of Ln between HNO solution and TDdDGA or HONTA / n-dodecane solvent were evaluated by the single drop technique. Prior to the evaluation of mass transfer coefficient, we had optimized the structure of the single drop apparatus to improve accuracy of the measurement. Based on the mass transfer coefficients obtained in HNO / TDdDGA-n-dodecane system, Ln behaviors in the counter-current extraction and back-extraction using mixer-settlers and centrifugal contactors were estimated by simple calculation, and they had a good agreement with our previous experimental results. We also confirmed the mass transfer coefficients of Ln in HNO / HONTA - n-dodecane system are under 10 m/s.
Takeda, Takahito*; Sakamoto, Shoya*; Araki, Kosei*; Fujisawa, Yuita*; Anh, L. D.*; Tu, N. T.*; Takeda, Yukiharu; Fujimori, Shinichi; Fujimori, Atsushi*; Tanaka, Masaaki*; et al.
Physical Review B, 102(24), p.245203_1 - 245203_8, 2020/12
Times Cited Count:7 Percentile:38.96(Materials Science, Multidisciplinary)Ishikawa, Takatsugu*; Fujimura, Hisako*; Fukasawa, Hiroshi*; Hashimoto, Ryo*; He, Q.*; Honda, Yuki*; Hosaka, Atsushi; Iwata, Takahiro*; Kaida, Shun*; Kasagi, Jirota*; et al.
Physical Review C, 101(5), p.052201_1 - 052201_6, 2020/05
Times Cited Count:4 Percentile:40.64(Physics, Nuclear)Sakamoto, Shoya*; Tu, N. T.*; Takeda, Yukiharu; Fujimori, Shinichi; Hai, P. N.*; Anh, L. D.*; Wakabayashi, Yuki*; Shibata, Goro*; Horio, Masafumi*; Ikeda, Keisuke*; et al.
Physical Review B, 100(3), p.035204_1 - 035204_8, 2019/07
Times Cited Count:16 Percentile:62.18(Materials Science, Multidisciplinary)Sakamoto, Shoya*; Tu, N. T.*; Takeda, Yukiharu; Fujimori, Shinichi; Hai, P. N.*; Anh, L. D.*; Wakabayashi, Yuki K.*; Shibata, Goro*; Horio, Masafumi*; Ikeda, Keisuke*; et al.
Physical Review B, 100(3), p.035204_1 - 035204_8, 2019/07
Watanabe, Tamaki*; Toyama, Takeshi*; Hanamura, Kotoku*; Imao, Hiroshi*; Kamigaito, Osamu*; Kamoshida, Atsushi*; Kawachi, Toshihiko*; Koyama, Ryo*; Sakamoto, Naruhiko*; Fukunishi, Nobuhisa*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1105 - 1108, 2019/07
Upgrades for the RIKEN heavy-ion linac (RILAC) involving a new superconducting linac (SRILAC) are currently underway at the RIKEN radioactive isotope beam factory (RIBF). It is crucially important to develop nondestructive beam measurement diagnostics. We have developed a beam energy position monitor (BEPM) system which can measure not only the beam position but also the beam energy simultaneously by measuring the time of flight of the beam. We fabricated 11 BEPMs and completed the position calibration to obtain the sensitivity and offset for each BEPMs. The position accuracy has been achieved to be less than 0.1 mm by using the mapping measurement.
Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki; Misumi, Ryuta*; Kunii, Kanako*; Todoroki, Kei*; Nishi, Kazuhiko*; Kaminoyama, Meguru*
Kagaku Kogaku Rombunshu, 44(6), p.335 - 340, 2018/11
Concerning an annular centrifugal contactor which has high throughput and separation performance, the effect of operational condition on fluidic and dispersion behavior, which are important to improve the contactor performance, was investigated by computational fluid dynamics (CFD) analysis based on the turbulence model, and the calculated results were validated by experimental data. The liquid phase in the annular zone was gradually divided into two regions vertically with increasing the rotor speed and decreasing the flowrate, and the liquid flow moved toward the center of the housing bottom was generated in the lower annular zone under any operational condition. The droplet size of the dispersed phase in the annular zone decreased with increasing the rotor speed and decreasing the flowrate. These calculation results showed a good agreement with experimental data. The CFD analysis considering mass transfer between aqueous and organic phases was also attempted, and it was confirmed that the change of extraction performance with the rotor speed showed the same tendency as the experimental result.
Horio, Masafumi*; Takeda, Yukiharu; Namiki, Hiromasa*; Katagiri, Takao*; Wakabayashi, Yuki*; Sakamoto, Shoya*; Nonaka, Yosuke*; Shibata, Goro*; Ikeda, Keisuke*; Saito, Yuji; et al.
Journal of the Physical Society of Japan, 87(10), p.105001_1 - 105001_2, 2018/10
Times Cited Count:2 Percentile:19.88(Physics, Multidisciplinary)Wakabayashi, Yuki*; Nonaka, Yosuke*; Takeda, Yukiharu; Sakamoto, Shoya*; Ikeda, Keisuke*; Chi, Z.*; Shibata, Goro*; Tanaka, Arata*; Saito, Yuji; Yamagami, Hiroshi; et al.
Physical Review Materials (Internet), 2(10), p.104416_1 - 104416_12, 2018/10
Times Cited Count:13 Percentile:40.50(Materials Science, Multidisciplinary)Misumi, Ryuta*; Todoroki, Kei*; Kunii, Kanako*; Nishi, Kazuhiko*; Kaminoyama, Meguru*; Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki
Kagaku Kogaku Rombunshu, 44(5), p.285 - 291, 2018/09
Annular centrifugal extractors have been anticipated for use as extractors in spent nuclear fuel recycling. The extraction rate and the liquid-liquid dispersion are related to the flow pattern in the vessel. However, no study has clarified flow patterns in vessels of various scales. For this study, flow pattern characteristics are quantified for extractors of two scales. An extractor has a mixing zone around the vessel bottom and a separation zone in the cylindrical rotor. For this experiment, distilled water was fed into the vessel. Flow behavior in the mixing zone was observed from a side view using a digital video camera at various rotor speeds and supply flow rates for extractors of two scales. In some cases, the liquid horizontal velocity vectors in the mixing zone were measured using particle image velocimetry. Results demonstrate that flow behaviors in the mixing zone in both scales of extractors are classifiable as three types, changing with operational conditions: Type A, Type B, and a Transition regime. For the Type A state, the mixing zone is fully filled with liquid from the vessel bottom up to the lower edge of the rotor. In the Type B state, the zone with existing liquid is vertically divisible into two regions. Lower rotor speeds and higher flow rates tend to produce Type A state flow behavior. The boundary operational condition between Type A and the Transition regime are correlated with the normalized supply flow rate and pumping capacity of the rotor, which is evaluated from liquid surface level in a rotor formed by centrifugal force. Furthermore, the fluid velocity in the mixing zone is roughly proportional to the rotor surface circumferential speed irrespective of the vessel scale.
Sano, Yuichi; Sakamoto, Atsushi; Kofuji, Hirohide; Takeuchi, Masayuki
Proceedings of 21st Pacific Basin Nuclear Conference (PBNC 2018) (USB Flash Drive), p.314 - 318, 2018/09
The effect of operational condition of the annular centrifugal contactor (ACC) on U extraction behavior was investigated by computational fluid dynamics (CFD) analysis considering mass transfer between aqueous and organic phases, and the calculation results were validated experimentally. The CFD analysis with ANSYS FLUENT was carried out using the Eulerian multi-fluid approach with a standard k- turbulence model. In order to calculate the droplet size of the dispersed phase and mass transfer between aqueous and organic phases, user-defined functions (UDF) were created. The changes of U extraction performance, i.e. U stage efficiency, with the rotor speed and the O/A ratio (= organic flowrate / aqueous flowrate) were calculated, and these showed a good agreement with experimental results.
Misumi, Ryuta*; Kunii, Kanako*; Todoroki, Kei*; Nishi, Kazuhiko*; Kaminoyama, Meguru*; Sano, Yuichi; Sakamoto, Atsushi; Takeuchi, Masayuki
Kagaku Kogaku Rombunshu, 44(3), p.135 - 141, 2018/05
Times Cited Count:1 Percentile:4.53(Engineering, Chemical)Annular centrifugal extractors have been used in spent nuclear fuel reprocessing, but the relation between the extraction rate and flow pattern in the vessel remains unclear. This study quantifies characteristics of the flow pattern to clarify this relation. An extractor produces a mixing zone around the vessel bottom and a separation zone in the rotor. The horizontal velocity of the liquid in the mixing zone was measured using particle image velocimetry at various rotor speeds and supply flow rates. Flow behaviors in the mixing zone are of three types, changing with operational conditions: Type A, Type B, and a transition regime. At lower rotor speeds and high supply flow rates, the mixing zone is fully filled with liquid from the vessel bottom up to the lower edge of the rotor: the Type A flow state. At high rotor speeds and low supply flow rates, the zone with existing liquid is vertically divisible into two regions: near the vanes and around the bottom of the rotor, which is the Type B flow state. A transition regime is also observed between Type A and Type B state. In each region surrounding the two vanes on the vessel bottom and the vessel wall, the liquid flowed in the direction of rotor rotation along the vessel wall. Liquid flow altered by the vane flowed toward the center of vessel bottom. The liquid then entered the separation zone through the orifice at the rotor bottom. For the Type A state, the horizontal velocity distribution was roughly proportional to the rotor speed. For the Type B state, the horizontal velocities around the vessel bottom were lower than those of Type A and were not proportional to the rotor speed. Presumably, the liquid fed into the vessel went directly to the rotor instead of passing between the two vanes attached to the vessel bottom.