Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kusano, Shogo*; Matsumura, Daiju; Asazawa, Koichiro*; Kishi, Hirofumi*; Sakamoto, Tomokazu*; Yamaguchi, Susumu*; Tanaka, Hirohisa*; Mizuki, Junichiro*
Journal of Electronic Materials, 46(6), p.3634 - 3638, 2017/06
Times Cited Count:3 Percentile:18.99(Engineering, Electrical & Electronic)Shimizu, Daisuke*; Tsukada, Shinya*; Matsuura, Masato*; Sakamoto, Junya*; Kojima, Seiji*; Namikawa, Kazumichi*; Mizuki, Junichiro; Owada, Kenji
Physical Review B, 92(17), p.174121_1 - 174121_5, 2015/11
Times Cited Count:15 Percentile:53.18(Materials Science, Multidisciplinary)The phase diagram and the relationship between the crystal coherence length and electrical response of Pb[(MgNb)Ti]O (PMN-xPT) near the morphotropic phase boundary (MPB) have been precisely investigated using a single crystal with a Ti composition gradient by synchrotron X-ray diffraction and inelastic light scattering at room temperature. The crystal has two boundaries at Ti compositions of 29.0 mol% and 34.7 mol% which correspond to the phase boundaries between the monoclinic B (MB) and C (MC) phases and between the MC and tetragonal (T) phases, respectively. It is shown that there is a strong negative correlation between the electrical response and the crystal coherence length at the sub-m scale. The results are explained by the size effects of domains near the MPB.
Nakashima, Yosuke*; Takeda, Hisahito*; Ichimura, Kazuya*; Hosoi, Katsuhiro*; Oki, Kensuke*; Sakamoto, Mizuki*; Hirata, Mafumi*; Ichimura, Makoto*; Ikezoe, Ryuya*; Imai, Tsuyoshi*; et al.
Journal of Nuclear Materials, 463, p.537 - 540, 2015/08
Times Cited Count:21 Percentile:84.82(Materials Science, Multidisciplinary)Nakashima, Yosuke*; Sakamoto, Mizuki*; Yoshikawa, Masayuki*; Oki, Kensuke*; Takeda, Hisahito*; Ichimura, Kazuya*; Hosoi, Katsuhiro*; Hirata, Mafumi*; Ichimura, Makoto*; Ikezoe, Ryuya*; et al.
Proceedings of 25th IAEA Fusion Energy Conference (FEC 2014) (CD-ROM), 8 Pages, 2014/10
Sakamoto, Mizuki*; Ono, Noriyasu*; Asakura, Nobuyuki; Hoshino, Kazuo
Purazuma, Kaku Yugo Gakkai-Shi, 90(8), p.473 - 479, 2014/08
no abstracts in English
Nakano, Tomohide; Sakamoto, Mizuki*
Purazuma, Kaku Yugo Gakkai-Shi, 88(11), p.672 - 674, 2012/11
no abstracts in English
Nakamura, Kazuo*; Jiang, Y.*; Liu, X.*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Hasegawa, Makoto*; Tokunaga, Kazutoshi*; Zushi, Hideki*; et al.
Fusion Engineering and Design, 86(6-8), p.1080 - 1084, 2011/10
Times Cited Count:4 Percentile:31.74(Nuclear Science & Technology)Sakamoto, Kazuyuki*; Hirayama, Masaaki*; Konishi, Hiroaki*; Sonoyama, Noriyuki*; Dupr, N.*; Guyomard, D.*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*
Physical Chemistry Chemical Physics, 12(15), p.3815 - 3823, 2010/04
Times Cited Count:33 Percentile:73.53(Chemistry, Physical)Surface and bulk structural changes of LiNiMnO were investigated during electrochemical reaction using synchrotron X-ray scattering and a restricted reaction plane consisting of two dimensional epitaxial-film electrodes. The changes in bulk structure confirmed lithium diffusion through the (110) surface, which was perpendicular to the two-dimensional (2D) edges of the layered structure. No (de)intercalation reaction was observed through the (003) surface at voltages of 3.0-5.0 V. However, intercalation did proceed through the (003) plane below 3.0 V, indicating unusual three-dimensional (3D) lithium diffusion in the over-lithiated 2D structure. During the electrochemical process, the surface of the electrode showed different structure changes from those of the bulk structure. The reaction echanism of the intercalation electrodes for lithium batteries is discussed on the basis of surface and bulk structural changes.
Sakamoto, Kazuyuki*; Hirayama, Masaaki*; Sonoyama, Noriyuki*; Mori, Daisuke*; Yamada, Atsuo*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*
Chemistry of Materials, 21(13), p.2632 - 2640, 2009/05
Times Cited Count:42 Percentile:73.97(Chemistry, Physical)Surface and bulk structural changes in LiNiCoO were observed during electrochemical reactions using synchrotron X-ray scattering and a restricted reaction plane of two-dimensional (2D) epitaxial-film electrodes. The bulk structural changes confirmed lithium diffusion through the (110) surface, which is perpendicular to the 2D edges of the layered structure. No (de)intercalation reaction was observed through the (003) surface in the voltage range of 3.0-5.0 V. However, intercalation proceeded below 3.0 V, which indicates unusual three-dimensional lithium diffusion in the 2D structure in the overlithiated state. Structural changes at the electrode surface were different from those in the bulk.
Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.
Kyushu Daigaku Oyo Rikigaku Kenkyujo RIAM Fuoramu 2008 Koen Yoshi, p.66 - 69, 2008/06
no abstracts in English
Hirayama, Masaaki*; Sakamoto, Kazuyuki*; Hiraide, Tetsuya*; Mori, Daisuke*; Yamada, Atsuo*; Kanno, Ryoji*; Sonoyama, Noriyuki*; Tamura, Kazuhisa; Mizuki, Junichiro
Electrochimica Acta, 53(2), p.871 - 881, 2007/12
Times Cited Count:45 Percentile:67.01(Electrochemistry)An experimental technique was developed for detecting structure changes at the electrode/electrolyte interface of lithium cell using synchrotron X-ray reflectometry and two-dimensional model electrodes with a restricted lattice plane. The electrode was constructed with an epitaxial film of LiNiCoO synthesized by the pulsed laser deposition method. These films provided an ideal reaction field suitable for detecting structure changes at the electrode/electrolyte interface during the electrochemical reaction. The X-ray reflectometry indicated a formation of a thin-film layer at the LiNiCoO (1 1 0)/electrolyte interface during the first charge-discharge cycle, while the LiNiCoO (0 0 3) surface showed an increase in the surface roughness without forming the surface thin-film layer.
Sakamoto, Kazuyuki*; Konishi, Hiroaki*; Sonoyama, Noriyuki*; Yamada, Atsuo*; Tamura, Kazuhisa; Mizuki, Junichiro; Kanno, Ryoji*
Journal of Power Sources, 174(2), p.678 - 682, 2007/12
Times Cited Count:25 Percentile:59.91(Chemistry, Physical)Structure changes of LiNiMnO were detected at the electrode/electrolyte interface of lithium cell using synchrotron X-ray scattering and two-dimensional model electrodes. The electrodes were constructed by an epitaxial film of LiNiMnO synthesized by pulsed laser deposition (PLD) method. The orientation of the film depends on the substrate plane; the 2D layer of LiNiMnO is parallel to the SrTiO(1 1 0) substrate ((1 1 0) LiNiMnO//(1 1 0) SrTiO), while the 2D layer is perpendicular to the SrTiO(1 1 1) substrate ((0 0 3) LiNiMnO//(1 1 1) SrTiO). The X-ray diffraction of LiNiMnO(0 0 3) confirmed three-dimensional lithium diffusion through the two-dimensional transition meal layers. The intercalation reaction of LiNiMnO will be discussed.
Asakura, Nobuyuki; Kawashima, Hisato; Shimizu, Katsuhiro; Sakurai, Shinji; Fujita, Takaaki; Takenaga, Hidenobu; Nakano, Tomohide; Kubo, Hirotaka; Higashijima, Satoru; Hayashi, Takao; et al.
Europhysics Conference Abstracts (CD-ROM), 31F, 4 Pages, 2007/00
Divertor design for the JT-60 SA has been progressing in order to handle large heat flux during full pulse duration of 100 s. Divertor should be suitable for single null plasma experiments with the full power injection of 41 MW. The simulation results using 2D fluid (plasma) and Monte-Carlo (neutral) code are summarized. Lower single-null divertor is designed for ITER-like plasma configuration in order to study physics concept of the ITER divertor: control of the plasma detachment. Simulation results for various divertor geometries showed that the vertical target with V-shaped corner can produce plasma detachment near the outer strike-point for medium edge plasma density. It was also demonstrated that the divertor plasma became attached to move the outer strike point above the V-corner, suggesting that recover from sever detachment can be achieved by changing the plasma location. USN divertor will be designed for high- plasma experiments with the highest shaping plasma of S=6.
Ninomiya, Hiromasa; Akiba, Masato; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hayashi, Nobuhiko; Hosogane, Nobuyuki; Ikeda, Yoshitaka; Inoue, Nobuyuki; et al.
Journal of the Korean Physical Society, 49, p.S428 - S432, 2006/12
To contribute DEMO and ITER, the design to modify the present JT-60U into superconducting coil machine, named National Centralized Tokamak (NCT), is being progressed under nationwide collaborations in Japan. Mission, design and strategy of this NCT program is summarized.
Wang, F.*; Nakamura, Kazuo*; Mitarai, Osamu*; Kurihara, Kenichi; Kawamata, Yoichi; Sueoka, Michiharu; Sato, Konosuke*; Zushi, Hideki*; Hanada, Kazuaki*; Sakamoto, Mizuki*; et al.
Kyushu Daigaku Oyo Rikigaku Kenkyujo RIAM Fuoramu 2006 Koen Yoshi, p.138 - 141, 2006/06
no abstracts in English
Kikuchi, Mitsuru; Tamai, Hiroshi; Matsukawa, Makoto; Fujita, Takaaki; Takase, Yuichi*; Sakurai, Shinji; Kizu, Kaname; Tsuchiya, Katsuhiko; Kurita, Genichi; Morioka, Atsuhiko; et al.
Nuclear Fusion, 46(3), p.S29 - S38, 2006/03
Times Cited Count:13 Percentile:41.02(Physics, Fluids & Plasmas)The National Centralized Tokamak (NCT) facility program is a domestic research program for advanced tokamak research to succeed JT-60U incorporating Japanese university accomplishments. The mission of NCT is to establish high beta steady-state operation for DEMO and to contribute to ITER. The machine flexibility and mobility is pursued in aspect ratio and shape controllability, feedback control of resistive wall modes, wide current and pressure profile control capability for the demonstration of the high-b steady state.
Tsuchiya, Katsuhiko; Akiba, Masato; Azechi, Hiroshi*; Fujii, Tsuneyuki; Fujita, Takaaki; Fujiwara, Masami*; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; et al.
Fusion Engineering and Design, 81(8-14), p.1599 - 1605, 2006/02
Times Cited Count:1 Percentile:9.80(Nuclear Science & Technology)no abstracts in English
Tamai, Hiroshi; Akiba, Masato; Azechi, Hiroshi*; Fujita, Takaaki; Hamamatsu, Kiyotaka; Hashizume, Hidetoshi*; Hayashi, Nobuhiko; Horiike, Hiroshi*; Hosogane, Nobuyuki; Ichimura, Makoto*; et al.
Nuclear Fusion, 45(12), p.1676 - 1683, 2005/12
Times Cited Count:15 Percentile:45.00(Physics, Fluids & Plasmas)Design studies are shown on the National Centralized Tokamak facility. The machine design is carried out to investigate the capability for the flexibility in aspect ratio and shape controllability for the demonstration of the high-beta steady state operation with nation-wide collaboration, in parallel with ITER towards DEMO. Two designs are proposed and assessed with respect to the physics requirements such as confinement, stability, current drive, divertor, and energetic particle confinement. The operation range in the aspect ratio and the plasma shape is widely enhanced in consistent with the sufficient divertor pumping. Evaluations of the plasma performance towards the determination of machine design are presented.
Tamai, Hiroshi; Matsukawa, Makoto; Kurita, Genichi; Hayashi, Nobuhiko; Urata, Kazuhiro*; Miura, Yushi; Kizu, Kaname; Tsuchiya, Katsuhiko; Morioka, Atsuhiko; Kudo, Yusuke; et al.
Plasma Science and Technology, 6(1), p.2141 - 2150, 2004/02
Times Cited Count:2 Percentile:6.42(Physics, Fluids & Plasmas)The dominant issue for the the modification program of JT-60 (JT-60SC) is to demonstrate the steady state reactor relevant plasma operation. Physics design on plasma parameters, operation scenarios, and the plasma control method are investigated for the achievement of high-. Engineering design and the R&D on the superconducting magnet coils, radiation shield, and vacuum vessel are performed. Recent progress in such physics and technology developments is presented.
Ishida, Shinichi; Abe, Katsunori*; Ando, Akira*; Chujo, T.*; Fujii, Tsuneyuki; Fujita, Takaaki; Goto, Seiichi*; Hanada, Kazuaki*; Hatayama, Akiyoshi*; Hino, Tomoaki*; et al.
Nuclear Fusion, 43(7), p.606 - 613, 2003/07
no abstracts in English