Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 49

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Liquid decontamination using acidic electrolyzed water for various uranium-contaminated steel surfaces in dismantled centrifuge

Sakasegawa, Hideo; Nomura, Mitsuo; Sawayama, Kengo; Nakayama, Takuya; Yaita, Yumi*; Yonekawa, Hitoshi*; Kobayashi, Noboru*; Arima, Tatsumi*; Hiyama, Toshiaki*; Murata, Eiichi*

Progress in Nuclear Energy, 153, p.104396_1 - 104396_9, 2022/11

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

When dismantling centrifuges in uranium-enrichment facilities, decontamination techniques must be developed to remove uranium-contaminated surfaces of dismantled parts selectively. Dismantled uranium-contaminated parts can be disposed of as nonradioactive wastes or recycled after decontamination appropriate for clearance. previously, we developed a liquid decontamination technique using acidic electrolyzed water to remove uranium-contaminated surfaces. However, further developments are still needed for its actual application. Dismantled parts have various uranium-contaminated surface features due to varied operational conditions, inhomogeneous decontamination using iodine heptafluoride gas, and changes in long-term storage conditions after dismantling. Here, we performed liquid decontamination on specimens with varying uranium-contaminated surfaces cut from a centrifuge made of low-carbon steel. From the results, the liquid decontamination can effectively remove the uranium-contaminated surfaces, and radioactive concentrations fell below the target value within twenty minutes. Although the required time should also depend on dismantled parts' sizes and shapes in their actual application, we demonstrated that it could be an effective decontamination technique for uranium-contaminated steels of dismantled centrifuges.

Journal Articles

Researches for uranium waste disposal

Sakasegawa, Hideo

ENEKAN, 20, p.20 - 23, 2022/07

no abstracts in English

Journal Articles

Effects of helium on irradiation response of reduced-activation ferritic-martensitic steels; Using nickel isotopes to simulate fusion neutron response

Kim, B. K.*; Tan, L.*; Sakasegawa, Hideo; Parish, C. M.*; Zhong, W.*; Tanigawa, Hiroyasu*; Kato, Yutai*

Journal of Nuclear Materials, 545, p.152634_1 - 152634_12, 2021/03

 Times Cited Count:1 Percentile:19.33(Materials Science, Multidisciplinary)

Journal Articles

Physical properties of F82H for fusion blanket design

Hirose, Takanori; Nozawa, Takashi; Stoller, R. E.*; Hamaguchi, Dai; Sakasegawa, Hideo; Tanigawa, Hisashi; Tanigawa, Hiroyasu; Enoeda, Mikio; Kato, Yutai*; Snead, L. L.*

Fusion Engineering and Design, 89(7-8), p.1595 - 1599, 2014/10

 Times Cited Count:41 Percentile:96.29(Nuclear Science & Technology)

The material properties, focusing on the properties used for design analysis were re-assessed and newly investigated for various heats including F82H-IEA. Moreover, irradiation effects on those properties were studied in this work. As for thermal properties, thermal conductivity that has significant impacts on the thermo-hydraulic properties of the blanket was investigated on several heats of F82H including F82H-IEA. According to the measurements, the thermal conductivity falls in the range 28.3$$pm$$1.1 W/m/K at 293 K. Although this is comparable with that of the other ferritic/martensitic steels, it is 20% lower than the published value for F82H-IEA. The re-assessment on the published value revealed that the thermal diffusivity was over-estimated. As for irradiation effects on the physical properties, electric resistivity was measured after irradiation up to 6 dpa at 573 K and 673 K. The reduction of resistivity in F82H and its welds were 3% and 6%, respectively.

Journal Articles

Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

Journal of Nuclear Science and Technology, 51(6), p.737 - 743, 2014/06


 Times Cited Count:5 Percentile:37.74(Nuclear Science & Technology)

Oxide-dispersion-strengthened (ODS) steels are attractive materials for the fuel cladding of fast reactors and the first-wall material of fusion blanket. High-chromium ferritic ODS steels have better corrosion-resistance properties, but they have poor material workability and anisotropy, making their practical application difficult. In contrast, low-chromium ferritic/martensitic ODS steels have better workability and their anisotropy can be reduced through martensitic transformation. However, their corrosion-resistance properties are poor, compared to high-chromium ferrtic ODS steels. In this work, we developed a corrosion-resistant coating technique for 8Cr ferritic/martensitic ODS steel. The ODS steel was coated with 304 or 430 stainless steel by changing the canning material from mild steel to stainless steel in the conventional material processing procedure and using it as a coating material.

Journal Articles

Microsegregation in a F82H plate

Sakasegawa, Hideo; Tanigawa, Hiroyasu

Journal of Nuclear Materials, 442(1-3), p.S18 - S22, 2013/11

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Through the Broader Approach (BA) activity in Japan, F82H-BA07 heat of 5 tons prepared applying electrosrag remelting (ESR) has been studied as a step toward a larger-scale melting about 20 tons. From the result of elemental mapping images using electron probe microanalysis (EPMA), micro-segregation of at least four metallic elements such as chromium, tungsten, vanadium and manganese was found as stripes parallel to the hot rolling direction. In the case of tungsten segregation, the maximum difference of content was about 1.0 wt% between the observed stripes. This difference could cause differences in nano-metric structures between stripes, and affect mechanical properties. In this presentation, we discuss how much micro-segregation should be decreased considering effects of micro-segregation on nano-metric structures and mechanical properties in addition to the result of optimization of homogenizing condition.

Journal Articles

Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system

Shiba, Kiyoyuki; Tanigawa, Hiroyasu; Hirose, Takanori; Sakasegawa, Hideo; Jitsukawa, Shiro

Fusion Engineering and Design, 86(12), p.2895 - 2899, 2011/12

 Times Cited Count:43 Percentile:94.71(Nuclear Science & Technology)

Aging properties of reduced activation ferritic/martensitic steel F82H was researched at temperature ranging from 400$$^{circ}$$C to 650$$^{circ}$$C up to 100,000 hr. Microstructure, tensile, and Charpy properties were carried out. Laves was found at temperatures between 550 and 650$$^{circ}$$C and M$$_{6}$$C carbides were found at the temperatures between 500 and 600$$^{circ}$$C over 10,000 hr. These precipitates caused degradation in toughness, especially at temperatures ranging from 550$$^{circ}$$C to 650$$^{circ}$$C. Tensile properties do not have serious aging effect, except for 650$$^{circ}$$C, which caused large softening even after 10.000 hr. Increase of precipitates also causes some degradation in ductility, but it is not critical. Large increase in DBTT caused by the large Laves phase precipitation at grain boundary was observed in the 650$$^{circ}$$C aging. Laves precipitates at grain boundary also degrades the USE of the aged materials. These aging test results provide F82H can be used up to 30,000 hr at 550$$^{circ}$$C.

Journal Articles

Precipitation behavior in F82H during heat treatments of blanket fabrication

Sakasegawa, Hideo; Tanigawa, Hiroyasu; Kano, Sho; Enomoto, Masato*

Fusion Engineering and Design, 86(9-11), p.2541 - 2544, 2011/10

 Times Cited Count:16 Percentile:76.26(Nuclear Science & Technology)

Reduced Activation Ferritic/Martensitic steels (RAFMs) are leading candidates for the structural material of DEMO blanket module. Through the Broader Approach (BA) activity in Japan, the fabrication techniques for the DEMO blanket module has been studied and developed. In the techniques, the development of joining technique is especially important for fabricating the complicated structure of blanket module. In particular, Hot Isostatic Pressing (HIP) has been applied to joining cooling channels with a rectangular cross section. During and after HIP, the structural material are exposed to various heat treatments such as holding at the HIP temperature, following furnace cooling, 2nd normalizing to refine austenite grains, and 2nd tempering. Microstructural evolutions during these various heat treatments should be focused, because they determine the performance of the blanket module. Especially, fine precipitates such as tantalum and vanadium carbides precipitated at high temperatures greatly affect the creep property, the material toughness, and irradiation resistances of RAF as the structural material. In this work, we have studied the stability of fine precipitates in the F82H-BA07 heat (8Cr-2W-V, Ta) during simulated heat treatments of the blanket fabrication.

Journal Articles

Stability of non-stoichiometric clusters in the MA957 ODS ferrtic alloy

Sakasegawa, Hideo; Legendre, F.*; Boulanger, L.*; Brocq, M.*; Chaffron, L.*; Cozzika, T.*; Malaplate, J.*; Henry, J.*; de Carlan, Y.*

Journal of Nuclear Materials, 417(1-3), p.229 - 232, 2011/10

 Times Cited Count:60 Percentile:97.48(Materials Science, Multidisciplinary)

In our past work, the commercial ferrtic Oxide Dispersion Strengthened (ODS) alloy MA957 had at least two types of nanometer-sized oxide particles: non-stoichiometric Y-, Ti-, O-enriched clusters and Y$$_{2}$$Ti$$_{2}$$O$$_{7}$$ particles. The size of the non-stoichiometric clusters was much smaller than that of Y$$_{2}$$Ti$$_{2}$$O$$_{7}$$ particles and it was confirmed that the non-stoichiometric clusters possibly dominate the oxide dispersion strengthening. Therefore, this study dealt with the stability and evolution mechanisms of non-stoichiometric nanoclusters after the annealing (1473K $$times$$ 1h). This annealing condition was determined considering the actual condition of consolidation processes. After the annealing, most non-stoichiometric Y-, Ti-, O-enriched clusters were stable, but some clusters became Y$$_{2}$$Ti$$_{2}$$O$$_{7}$$ particles with increasing size. The diffusion of yttrium had an important role for the evolution of these oxides.

Journal Articles

High-temperature strength characterization of advanced 9Cr-ODS ferritic steels

Ukai, Shigeharu*; Otsuka, Satoshi; Kaito, Takeji; Sakasegawa, Hideo*; Chikada, Nobuyoshi*; Hayashi, Shigenari*; Onuki, Somei*

Materials Science & Engineering A, 510-511, p.115 - 120, 2009/06

 Times Cited Count:97 Percentile:96.46(Nanoscience & Nanotechnology)

Oxide dispersion strengthened (ODS) ferritic steels, which are the most promising candidate materials for advanced fast reactor fuel elements, have exceptional creep strength at 973 K. The superior creep property of 9Cr-ODS ferritic steels is ascribed to the formation of a nonequilibrium phase, designated as the residual ferrite. The yield strength of the residual ferrite itself has been determined to be as high as 1360 MPa at room temperature from nanoindentation measurements. The creep strength is enhanced by minimizing the number of packet boundaries induced by the martensitic phase transformation. The creep strain occurs by sliding at weaker regions such as at the grain boundaries and packet boundaries. It is found that 9Cr-ODS ferritic steels behave as fiber composite materials comprising the harder residual ferrite and the softer tempered martensite.

Journal Articles

Effects of aluminum on high-temperature strength of 9Cr-ODS steel

Otsuka, Satoshi; Kaito, Takeji; Inoue, Masaki; Asayama, Tai; Kim, S.-W.; Ukai, Shigeharu*; Narita, Takeshi*; Sakasegawa, Hideo*

Journal of Nuclear Materials, 386-388, p.479 - 482, 2009/04

 Times Cited Count:18 Percentile:76.85(Materials Science, Multidisciplinary)

This paper discusses the effects of small portion of Al contamination ($$<$$0.1wt%) on the high-temperature strength and microstructure of 9Cr-ODS steel. Increasing Al concentration is shown to provide small reduction of ultimate tensile strength as well as 0.2% proof stress at 973 K and 1073 K accompanied by reduction of elongated grains i.e. residual-$$alpha$$ ferrite acting as reinforcement phase. Addition of Al appears to increase the proportion of ferrite phase, which is contrary to general behavior in conventional steels. This unique behavior could be peculiar to the non-equilibrium materials such as mechanically-alloyed alloy. Computer simulation on phase transformation suggests that the fine oxide dispersion in the elongated ferrite could be attributable to the preferential partitioning of Ti and W in ferrite than in austenite at hot-extrusion process at 1423 K.

JAEA Reports

Radiation effect on oxide-dispersion-strengthened ferritic/martensitic steel under influence of applied stress and improvement of shape stability under irradiation

Sakasegawa, Hideo

JAEA-Research 2007-053, 50 Pages, 2007/11


9Cr-ODS (Oxide Dispersion Strengthened) steels developed by JAEA have superior creep properties. The 9Cr ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the delta ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the martensite. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative model of creep mechanism was studied using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated. In addition to that, modifications of material processing procedures for improving the creep property under irradiation and unirradiation were performed considering procedures for mass production.

Journal Articles

Irradiation effects on precipitation and its impact on the mechanical properties of reduced-activation ferritic/martensitic steels

Tanigawa, Hiroyasu; Sakasegawa, Hideo; Hashimoto, Naoyuki*; Klueh, R. L.*; Ando, Masami; Sokolov, M. A.*

Journal of Nuclear Materials, 367-370(1), p.42 - 47, 2007/08

 Times Cited Count:26 Percentile:84.42(Materials Science, Multidisciplinary)

It was previously reported that reduced-activation ferritic/martensitic steels (RAFs), such as F82H-IEA and its heat treatment variant, ORNL9Cr-2WVTa, JLF-1 and 2%Ni-doped F82H, showed a variety of changes in ductile-brittle transition temperature (DBTT) and yield stress after irradiation at 573K up to 5dpa. These differences could not be interpreted solely as an effect of irradiation hardening caused by dislocation loop formation. To address these observations, the precipitation behavior of the irradiated steels was examined by weight analysis, X-ray diffraction analysis and chemical analysis on extraction residues. The results suggested that irradiation affects precipitation as if it was forced to reach the thermal equilibrium state at irradiation temperature 573K, which usually never be achieved by aging. The details of precipitates in the irradiated RAFs were examined to determine their impact on the mechanical properties, which obtained by tensile, Charpy impact, and bend bar toughness tests. Transmission electron microscopy was performed on thin films and extraction replica specimens to analyze the size distribution, chemical composition and crystal structure of precipitates. It turned out that the hardening level normalized by square root of average packet size showed a linear dependence on the increase of extracted precipitate weight. This dependence suggests that the difference in irradiation hardening between RAFs was caused by the different precipitation behavior on packet, block and prior austenitic grain boundaries during irradiation. The simple Hall-Petch law could be applicable to interpret this dependence. Detailed analytical results will be presented and their interpretation discussed.

Journal Articles

Radiation induced phase instability of precipitates in reduced-activation ferritic/martensitic steels

Tanigawa, Hiroyasu; Sakasegawa, Hideo; Ogiwara, Hiroyuki*; Kishimoto, Hirotatsu*; Koyama, Akira*

Journal of Nuclear Materials, 367-370(1), p.132 - 136, 2007/08

 Times Cited Count:37 Percentile:91.33(Materials Science, Multidisciplinary)

It was previously reported that reduced-activation ferritic/martensitic steels (RAFs), such as F82H-IEA and JLF-1, showed a variety of changes in its mechanical property after neutron irradiation at 573K up to 5dpa, and have possible correlation with precipitation. The effects of irradiation on precipitation were also reported previously. In this study, irradiation effects on precipitation were investigated in detail utilizing ion irradiation in which irradiation condition could be controlled with high accuracy. F82H IEA heat, JLF-1 HFIR heat, and aged F82H-IEA (873K$$times$$30k h) were used for experiments. The specimens were irradiated at DuET facility, Inst. of Advanced Energy, Kyoto University up to 10 dpa at 573K with 6.4MeV Fe$$^{3+}$$ ion. Cross sectional TEM thin film specimens of ion irradiated region were made utilizing focused ion beam (FIB) processor with micro-sampling system at JAERI. These thin film specimens were made to contain both irradiated region and non-irradiated region beneath irradiated region. Size distribution and aspect ratio of precipitates were analyzed on each region. It turned out that the finer precipitates were dominant in irradiated region of F82H compared to that in non-irradiated region, but fewer and larger precipitates were dominant in irradiated region of JLF-1. These results confirmed the presence of irradiation effects on precipitate evolution even at 573K, which was observed in neutron irradiated RAFs.

Journal Articles

Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength

Otsuka, Satoshi; Ukai, Shigeharu; Sakasegawa, Hideo; Fujiwara, Masayuki; Kaito, Takeji; Narita, Takeshi

Journal of Nuclear Materials, 367-370(1), p.160 - 165, 2007/08

 Times Cited Count:59 Percentile:95.98(Materials Science, Multidisciplinary)

This paper describes the effect on creep strength and microstructure of 9Cr-oxide dispersion strengthened martensitic steel (9Cr-ODS steel) brought by the differences in titanium concentration and consolidation temperature. The increase of titanium concentration to 0.30-0.35wt% was shown to provide remarkable improvement of creep strength accompanied by the increase of residual-alpha ferrite. The elevation of hot-extrusion temperature notably degraded the creep strength, however, appeared to increase the volume fraction of residual-alpha ferrite. Creep deformation process of 9Cr-ODS steel was discussed to explain these results based on microstructure observations.

Journal Articles

Irradiation effects on precipitation in reduced-activation ferritic/martensitic steels

Tanigawa, Hiroyasu; Sakasegawa, Hideo*; Klueh, R. L.*

Materials Transactions, 46(3), p.469 - 474, 2005/03

 Times Cited Count:19 Percentile:74.16(Materials Science, Multidisciplinary)

The effects of irradiation on precipitation of reduced-activation ferritic/martensitic steels (RAFs) were investigated, and its impacts on the Charpy impact properties and tensile properties were discussed. It was previously reported that RAFs (F82H-IEA and its heat treatment variant, ORNL9Cr-2WVTa, JLF-1 and 2%Ni doped F82H) shows variety of changes on its ductile-brittle transition temperature (DBTT) and yield stress after irradiation at 573K up to 5dpa. These differences could not be interpreted as an effect of irradiation hardening caused by dislocation loop formation. The precipitation behavior of the irradiated steels was examined by weight analysis, X-ray diffraction analysis and chemical analysis on extraction residues. These analyses suggested that irradiation caused (1) the increase of the amount of precipitates (mainly M$$_{23}$$C$$_{6}$$), (2) increase of Cr and decrease of W contained in precipitates, (3) disappearance of MX (TaC) in ORNL9Cr and JLF-1.

Journal Articles

Microstructure property analysis of HFIR-irradiated reduced-activation ferritic/martensitic steels

Tanigawa, Hiroyasu; Hashimoto, Naoyuki*; Sakasegawa, Hideo*; Klueh, R. L.*; Sokolov, M. A.*; Shiba, Kiyoyuki; Jitsukawa, Shiro; Koyama, Akira*

Journal of Nuclear Materials, 329-333(1), p.283 - 288, 2004/08

 Times Cited Count:18 Percentile:75.49(Materials Science, Multidisciplinary)

Reduced-activation ferritic/martensitic steels (RAFs) were developed as candidate structural materials for fusion power plants. In a previous study, it was reported that ORNL9Cr-2WVTa and JLF-1 (Fe-9Cr-2W-V-Ta-N) steels showed smaller ductile-brittle transition temperature (DBTT) shifts compared to IEA modified F82H (Fe-8Cr-2W-V-Ta) after neutron irradiation up to 5 dpa at 573K. This difference in DBTT shift could not be interpreted as an effect of irradiation hardening, and it is also hard to be convinced that this difference was simply due to a Cr concentration difference. To clarify the mechanisms of the difference in Charpy impact property between these steels, various microstructure analyses were performed.

Journal Articles

Analysis of Ta-rich MX precipitates in RAFs

Tanigawa, Hiroyasu; Sakasegawa, Hideo*; Hashimoto, Naoyuki*; Zinkle, S. J.*; Klueh, R. L.*; Koyama, Akira*

Fusion Materials Semiannual Progress Report for the Period Ending (DOE/ER-0313/35), p.33 - 36, 2004/04

Extraction replica samples were prepared from F82H-IEA, F82H HT2, JLF-1 and ORNL9Cr to analyze the precipitate distribution. The samples were examined to obtain precipitate size distribution with TEM and to analyze chemical composition distribution with SEM. Back-scattered electron imaging was found to be the effective way to separate Ta-rich precipitate from other precipitates. Results showed that most of the precipitates were M23C6, and the shape is a round ellipsoid in F82H-IEA and HT2, but was a long ellipsoid in JFL-1 and ORNL9Cr. It was also found that MX precipitates were few and large and contain Ti in F82H-IEA and HT2, but a lot of fine MX precipitates without Ti were observed in JLF-1 and ORNL9Cr.

Journal Articles

Analysis of extraction residue of HFIR 11J-irradiated RAFs

Tanigawa, Hiroyasu; Sakasegawa, Hideo*; Zinkle, S. J.*; Klueh, R. L.*; Koyama, Akira*

Fusion Materials Semiannual Progress Report for the Period Ending (DOE/ER-0313/35), p.30 - 32, 2004/04

Extraction residue was made from several HFIR 11J-irradiated RAFs, and the mass change was measured to investigate the irradiation-enhanced change in precipitation. Two different types of filter with coarse and fine pores were used in order to separate the difference of irradiation effects between larger and smaller precipitates. Unirradiated specimens were examined as well. Results suggest that during irradiation the mass of larger precipitates increased in F82H-IEA, Ni-doped F82H, JLF-1 and ORNL9Cr, fine precipitates disappeared in JLF-1, and fine precipitates increased in Ni-doped F82H.

Journal Articles

X-ray diffraction analysis on precipitates of 11J irradiated RAFs

Tanigawa, Hiroyasu; Sakasegawa, Hideo*; Payzant, E. A.*; Zinkle, S. J.*; Klueh, R. L.*; Koyama, Akira*

Fusion Materials Semiannual Progress Report for the Period Ending (DOE/ER-0313/35), p.37 - 40, 2004/04

XRD analyses were performed on the extraction residue of HFIR 11J-irradiated RAFs to investigate the overall precipitate character. Un-irradiated and aged specimens were examined as well. Results suggested that the distinctive peaks of M23C6 (M; Cr, Fe, W) were observed on all specimens. Peaks possibly related to MX (M;Ta,Ti,V : X ; C, N) were observed on the specimens extracted from un-irradiated JLF-1 and ORNL9Cr, but those peaks were not observed on irradiated specimens.

49 (Records 1-20 displayed on this page)