Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Evaluation of SCCV integrity under hypothetical sodium combustion, 1; Sodium combustion evaluation

Yamamoto, Tomohiko; Kato, Atsushi; Kubo, Shigenobu; Chikazawa, Yoshitaka; Sakaba, Hiroshi*; Sakashita, Takeshi*

no journal, , 

JSFR is planning to adopt a steel plate reinforced concrete (SC) structure for containment vessel (CV). This paper describes the analyses of hypothetical sodium combustion and load condition in the CV.

Oral presentation

Induction of cell killing by bystander effect with argon ion microbeam irradiation

Suzuki, Masao*; Autsavapromporn, N.*; Funayama, Tomoo; Yokota, Yuichiro; Muto, Yasuko*; Ikeda, Hiroko; Suzuki, Michiyo; Hattori, Yuya; Sakashita, Tetsuya; Kobayashi, Yasuhiko; et al.

no journal, , 

To determine signal transduction factors that are expected to be secreted from microbeam-irradiated cells, the time course analysis of cell killing effect in microbeam irradiated cell population was carried out. To irradiate cell with heavy-ion microbeam, a collimating heavy-ion microbeam system of JAEA-Takasaki was used. After microbeam irradiation, the samples were incubated for 0.5, 3, 24 hours respectively, and the cell killing effect of the microbeam irradiation were measured by colony formation assay. The result suggested that some factors, which induces bystander cell killing, were secreted after argon-ion microbeam, and the factor can be inhibited by the addition of gap-junction inhibitor and DMSO, but not by the ascorbic acid.

Oral presentation

P53-dependent cell-killing effect via bystander effect using carbon-ion microbeams simulating the spot scanning system with pencil beams at HIMAC

Suzuki, Masao*; Funayama, Tomoo; Yokota, Yuichiro; Suzuki, Michiyo; Ikeda, Hiroko; Sakashita, Tetsuya; Kobayashi, Yasuhiko; Murakami, Takeshi*

no journal, , 

We irradiated either 4-cell lines with wild-type P53 or 4-cell lines with mutated-type P53 using the microbeams of JAEA-Takasaki collimated by 20$$mu$$m in diameter. We can easily estimate the number of the directly irradiated cells to be just 0.04% of the total cells on the dish using the highly controlled microbeam irradiation system. The percent survival in the cells with wild-type P53 was around 90%, while almost 100% was observed in the cells with mutated-type P53. The results are consistent with the data using the carbon-ion broad beams with the shielding method at HIMAC. Our overall results showed that bystander cell-killing effect was observed in the cells with wild-type P53, but not in the P53-mutated cells. There is clear evidence that the spot scanning irradiation system of carbon ions enables the enhanced cell killing in cells with wild-type P53 gene via gap-junction mediated bystander effect.

3 (Records 1-3 displayed on this page)
  • 1