Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 55

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Research on activation assessment of a reactor structural materials for decommissioning

Seki, Misaki; Ishikawa, Koji*; Nagata, Hiroshi; Otsuka, Kaoru; Omori, Takazumi; Hanakawa, Hiroki; Ide, Hiroshi; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2018, P. 257, 2019/08

no abstracts in English

Journal Articles

Reactor physics experiment in graphite moderation system for HTGR, 1

Fukaya, Yuji; Nakagawa, Shigeaki; Goto, Minoru; Ishitsuka, Etsuo; Kawakami, Satoru; Uesaka, Takahiro; Morita, Keisuke; Sano, Tadafumi*

KURNS Progress Report 2018, P. 148, 2019/08

The Japan Atomic Energy Agency (JAEA) started the Research and Development (R&D) to improve nuclear prediction techniques for High Temperature Gas-cooled Reactors (HTGRs). The objectives are to introduce generalized bias factor method to avoid full mock-up experiment for the first commercial HTGR and to introduce reactor noise analysis to High Temperature Engineering Test Reactor (HTTR) experiment. To achieve the objectives, the reactor core of graphite moderation system named B7/4"G2/8"p8EUNU+3/8"p38EU(1) was newly composed in the B-rack of Kyoto University Critical Assembly (KUCA). The core plays a role of the reference core of the bias factor method, and the reactor noise was measured to develop the noise analysis scheme. In addition, training of operator of HTTR was also performed during the experiments.

Journal Articles

Radiochemical research for the advancement of $$^{99}$$Mo/$$^{99m}$$Tc generator by (n,$$gamma$$) method

Fujita, Yoshitaka; Seki, Misaki; Namekawa, Yoji*; Nishikata, Kaori; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

KURNS Progress Report 2018, P. 155, 2019/08

no abstracts in English

Journal Articles

Measurements of the $$^{243}$$Am neutron capture and total cross sections with ANNRI at J-PARC

Kimura, Atsushi; Nakamura, Shoji; Terada, Kazushi*; Nakao, Taro*; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 56(6), p.479 - 492, 2019/06

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Journal Articles

Measurements of neutron total and capture cross sections of $$^{241}$$Am with ANNRI at J-PARC

Terada, Kazushi*; Kimura, Atsushi; Nakao, Taro*; Nakamura, Shoji; Mizuyama, Kazuhito*; Iwamoto, Nobuyuki; Iwamoto, Osamu; Harada, Hideo; Katabuchi, Tatsuya*; Igashira, Masayuki*; et al.

Journal of Nuclear Science and Technology, 55(10), p.1198 - 1211, 2018/10

 Times Cited Count:1 Percentile:55.09(Nuclear Science & Technology)

Journal Articles

Study on neutron beam pulse width dependence in the nuclear fuel measurement by the neutron resonance transmission analysis

Kitatani, Fumito; Tsuchiya, Harufumi; Toh, Yosuke; Hori, Junichi*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Nakajima, Ken*

KURRI Progress Report 2017, P. 99, 2018/08

Journal Articles

Measurement of MA reaction rates using spallation neutron source

Oizumi, Akito; Fukushima, Masahiro; Tsujimoto, Kazufumi; Yamanaka, Masao*; Sano, Tadafumi*; Pyeon, C. H.*

KURRI Progress Report 2017, P. 50, 2018/08

In the nuclear transmutation system such as ADS, the nuclear data validation of MA is required to reduce the uncertainty caused by the nuclear data of MA. This study aims to measure the reaction rates of Neptunium-237 ($$^{237}$$Np) and Americium-241 ($$^{241}$$Am) using the nuclear spallation neutron source in the KUCA for 3 hours. The observed distributions of pulse-height of $$^{237}$$Np and $$^{241}$$Am fission reactions were significantly different from the ones generally observed in critical and pulsed neutron source (PNS) experiments because of the influence of the $$gamma$$-ray generated by the nuclear spallation reaction. On the other hand, the capture reaction rate of $$^{237}$$Np was measured in this experiment. The capture reaction rate of the critical experiment which was available to be measured the fission reaction rate of $$^{237}$$Np and $$^{241}$$Am was almost 8 times larger than that of this experiment. Consequently, reducing the influence of the $$gamma$$ generated by the nuclear spallation reaction and extending the duration of the irradiation to 24 or more hours would be necessary for detecting signals of fission reactions under the spallation neutron source.

Journal Articles

Neutron irradiation effect of high-density MoO$$_{3}$$ pellets for Mo-99 production

Fujita, Yoshitaka; Nishikata, Kaori; Namekawa, Yoji*; Kimura, Akihiro; Shibata, Akira; Sayato, Natsuki; Tsuchiya, Kunihiko; Sano, Tadafumi*; Fujihara, Yasuyuki*; Zhang, J.*

KURRI Progress Report 2017, P. 126, 2018/08

no abstracts in English

Journal Articles

Systematic effects on cross section data derived from reaction rates in reactor spectra and a re-analysis of $$^{241}$$Am reactor activation measurements

$v{Z}$erovnik, G.*; Schillebeeckx, P.*; Becker, B.*; Fiorito, L.*; Harada, Hideo; Kopecky, S.*; Radulovic, V.*; Sano, Tadafumi*

Nuclear Instruments and Methods in Physics Research A, 877, p.300 - 313, 2018/01

 Times Cited Count:1 Percentile:55.09(Instruments & Instrumentation)

Methodologies to derive cross section data from spectrum integrated reaction rates were studied. The Westcott convention and some of its approximations were considered. The accuracy of the results strongly depends on the assumptions that are made about the neutron energy distribution, which is mostly parameterised as a sum of a thermal and an epi-thermal component. Resonance integrals derived from such data can be strongly biased. When the energy dependence of the cross section is known and information about the neutron energy distribution is available, a method to correct for a bias on the cross section at thermal energy is proposed. Reactor activation measurements to determine the thermal $$^{241}$$Am(n, $$gamma$$) cross section reported in the literature were reviewed, where the results were corrected to account for possible biases. These data combined with results of time-of-flight measurements give a capture cross section 720 (14) b for $$^{241}$$Am(n, $$gamma$$) at thermal energy.

Journal Articles

Research and development for accuracy improvement of neutron nuclear data on minor actinides

Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki*; Katabuchi, Tatsuya*; et al.

EPJ Web of Conferences (Internet), 146, p.11001_1 - 11001_6, 2017/09

 Times Cited Count:1 Percentile:15.67

Journal Articles

Improving nuclear data accuracy of $$^{241}$$ Am and $$^{237}$$ Np capture cross sections

$v{Z}$erovnik, G.*; Schillebeeckx, P.*; Cano-Ott, D.*; Jandel, M.*; Hori, Junichi*; Kimura, Atsushi; Rossbach, M.*; Letourneau, A.*; Noguere, G.*; Leconte, P.*; et al.

EPJ Web of Conferences (Internet), 146, p.11035_1 - 11035_4, 2017/09

 Times Cited Count:2 Percentile:5.23

Journal Articles

Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility

Sano, Tadafumi*; Hori, Junichi*; Takahashi, Yoshiyuki*; Yashima, Hiroshi*; Lee, J.*; Harada, Hideo

EPJ Web of Conferences (Internet), 146, p.03031_1 - 03031_3, 2017/09

 Times Cited Count:1 Percentile:15.67

Journal Articles

High precision analysis of isotopic composition for samples used for nuclear cross-section measurements

Shibahara, Yuji*; Hori, Junichi*; Takamiya, Koichi*; Fujii, Toshiyuki*; Fukutani, Satoshi*; Sano, Tadafumi*; Harada, Hideo

EPJ Web of Conferences (Internet), 146, p.03028_1 - 03028_4, 2017/09

 Times Cited Count:0 Percentile:100

Journal Articles

Influence of the neutron transport tube on neutron resonance densitometry

Kitatani, Fumito; Tsuchiya, Harufumi; Koizumi, Mitsuo; Takamine, Jun; Hori, Junichi*; Sano, Tadafumi*

EPJ Web of Conferences (Internet), 146, p.09032_1 - 09032_3, 2017/09

 Times Cited Count:0 Percentile:100

Journal Articles

Neutron irradiation effect of high-density MoO$$_{3}$$ pellets for Mo-99 production, 3

Ishida, Takuya; Suzuki, Yoshitaka; Nishikata, Kaori; Yonekawa, Minoru; Kato, Yoshiaki; Shibata, Akira; Kimura, Akihiro; Matsui, Yoshinori; Tsuchiya, Kunihiko; Sano, Tadafumi*; et al.

KURRI Progress Report 2015, P. 64, 2016/08

no abstracts in English

Journal Articles

Activation measurements of neputunium-237 at KURRI-Linac

Nakamura, Shoji; Terada, Kazushi; Shibahara, Yuji*; Uehara, Akihiro*; Fujii, Toshiyuki*; Sano, Tadafumi*; Takahashi, Yoshiyuki*; Hori, Junichi*

KURRI Progress Report 2015, P. 67, 2016/08

The activation measurements of Np-237 were performed with neutron sources at KURRI-Linac. It was found that activation measurements supported the evaluated cross-section data of JENDL-4.0.

Journal Articles

Measurements of americium isotopes by activation method at KURRI-Linac

Nakamura, Shoji; Terada, Kazushi; Takahashi, Yoshiyuki*; Sano, Tadafumi*; Hori, Junichi*

KURRI Progress Report 2015, P. 69, 2016/08

Neutron capture cross section measurements has been conducted for Minor Actinides (MAs) under the research project entitled by "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)". The present work selected two americium isotopes, $$^{241}$$Am and $$^{243}$$Am, were selected, and measurements were carried out by an activation method with neutron sources at KURRI-Linac. It was found that the neutron flux at the target positon was of the order of 10$$^{8}$$ (n/cm$$^{2}$$s). The reaction rates of $$^{241}$$Am and $$^{243}$$Am were obtained by $$alpha$$- and $$gamma$$-ray measurements of the irradiated Am samples.

Journal Articles

Activation experiments for verification of neutron capture cross section of $$^{237}$$Np using variable neutron field at KURRI-LINAC

Takahashi, Yoshiyuki*; Hori, Junichi*; Sano, Tadafumi*; Yagi, Takahiro*; Yashima, Hiroshi*; Pyeon, C. H.*; Nakamura, Shoji; Harada, Hideo

Proceedings of International Conference on the Physics of Reactors; Unifying Theory and Experiments in the 21st Century (PHYSOR 2016) (USB Flash Drive), p.645 - 652, 2016/05

For the reduction of radioactive toxicities, feasibility study of nuclear transmutation of minor actinides (MAs) and long-lived fission products (LLFPs) by utilizing innovative nuclear reactor system (i.e. fast breeder reactors and accelerator-driven systems) has been actively conducted. To design these nuclear reactor systems, the accurate nuclear data are required. Therefore, to obtain more accurate nuclear data, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides(AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program". In a part of this project, the nuclear data of MAs are verified in the variable neutron spectra field at Kyoto University Research Reactor Institute-LINear ACcelerator (KURRI-LINAC) and Kyoto University Critical Assembly (KUCA). And the differential TOF data is cross-checked with an integral data for the validation of $$^{237}$$Np, $$^{241}$$Am, and $$^{243}$$Am. In this summary, the results of reaction rate of neutron capture cross section of $$^{237}$$Np are reported as an example in the study.

JAEA Reports

Application of Cherenkov light observation to reactor measurements, 2; Design and trial fabrication of Cherenkov light estimation system

Yamamoto, Keiichi; Takeuchi, Tomoaki; Hayashi, Takayasu*; Kosuge, Fumiaki*; Sano, Tadafumi*; Tsuchiya, Kunihiko

JAEA-Testing 2015-001, 25 Pages, 2015/11

JAEA-Testing-2015-001.pdf:3.52MB

Development of the reactor measurement system was started to obtain the real-time in-core nuclear and thermal information, where the quantitative measurement of brightness of Cherenkov light was investigated. This report was summarized the results of design and trial fabrication of the Cherenkov light estimation system from thermal power evaluation from Cherenkov light image emitted from the fuel elements. The developed Cherenkov light estimation system was verified with the Cherenkov light image emitted from the fuels in the core of Kyoto University Research Reactor (KUR). From the results, it is necessary to improve the observation method of Cherenkov light in the reactor and the evaluation method of the brightness of Cherenkov light. In future, the system will be applied for the evaluation of burn-up of spent fuels from the Cherenkov light emitted from the spent fuel assemblies in LWRs.

JAEA Reports

Establishment of experimental system for $$^{99}$$Mo/$$^{99m}$$Tc production by neutron activation method

Ishida, Takuya; Shiina, Takayuki*; Ota, Akio*; Kimura, Akihiro; Nishikata, Kaori; Shibata, Akira; Tanase, Masakazu*; Kobayashi, Masaaki*; Sano, Tadafumi*; Fujihara, Yasuyuki*; et al.

JAEA-Technology 2015-030, 42 Pages, 2015/11

JAEA-Technology-2015-030.pdf:4.82MB

The research and development (R&D) on the production of $$^{99}$$Mo/$$^{99m}$$Tc by neutron activation method ((n, $$gamma$$) method) using JMTR has been carried out in the Neutron Irradiation and Testing Reactor Center. The specific radioactivity of $$^{99}$$Mo by (n, $$gamma$$) method is extremely low compared with that by fission method ((n,f) method), and as a result, the radioactive concentration of the obtained $$^{99m}$$Tc solution is also lowered. To solve the problem, we propose the solvent extraction with methyl ethyl ketone (MEK) for recovery of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n, $$gamma$$) method. We have developed the $$^{99}$$Mo/$$^{99m}$$Tc separation/extraction/concentration devices and have carried out the performance tests for recovery of $$^{99m}$$Tc from $$^{99}$$Mo produced by (n, $$gamma$$) method. In this paper, in order to establish an experimental system for $$^{99}$$Mo/$$^{99m}$$Tc production, the R&D results of the system are summarized on the improvement of the devices for high-recovery rate of $$^{99m}$$Tc, on the dissolution of the pellets, which is the high-density molybdenum trioxide (MoO$$_{3}$$) pellets irradiated in Kyoto University Research Reactor (KUR), on the production of $$^{99m}$$Tc, and on the inspection of the recovered $$^{99m}$$Tc solutions.

55 (Records 1-20 displayed on this page)