Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Flexible fuel cycle R&D for the smooth FBR deployment

Fukasawa, Tetsuo*; Yamashita, Junichi*; Hoshino, Kuniyoshi*; Sasahira, Akira*; Inoue, Tadashi*; Minato, Kazuo; Sato, Seichi*

Proceedings of 16th Pacific Basin Nuclear Conference (PBNC-16) (CD-ROM), 6 Pages, 2008/10

Transition period from light water reactors (LWR) to fast breeder reactors (FBR) is quite important to achieve the future FBR cycle system. The transition scenarios were carefully studied and the Flexible Fuel Cycle Initiative (FFCI) was proposed in this study. FFCI carries out about 90% uranium (U) removal from LWR spent fuels (SF) at first and then recovers plutonium/uranium (Pu/U) from the remaining SF named "recycle material"(RM) (about 40% U, 15% Pu and 45% other nuclides) for FBR fresh fuel fabrication according to the FBR deployment status. The FFCI has some merits compared with ordinary system that carries out full reprocessing of LWR SF, that is volume reduction of LWR SF by its conversion to RM (proliferation resistant material), and storage and supply of high Pu density RM according to FBR deployment rate changes.

Journal Articles

Uranium recovery in LWR reprocessing and plutonium/residual uranium conditioning in FBR reprocessing for the transition from LWR to FBR

Fukasawa, Tetsuo*; Yamashita, Junichi*; Hoshino, Kuniyoshi*; Sasahira, Akira*; Inoue, Tadashi*; Minato, Kazuo; Sato, Seichi*

Proceedings of 3rd International ATALANTE Conference (ATALANTE 2008) (CD-ROM), 7 Pages, 2008/05

In order to flexibly manage the transition period from LWR to FBR, the authors investigated the transition scenario and proposed the Flexible Fuel Cycle Initiative (FFCI). In FFCI, LWR spent fuel reprocessing only carries out the removal of about 90% uranium that will be purified and utilized in LWR after re-enrichment. The residual material (40% U, 15% Pu and 45% other nuclides) is transferred to temporary storage and/or FBR spent fuel reprocessing to recover Pu/U followed by FBR fresh fuel fabrication depending on the FBR introduction status. The FFCI has some merits compared with ordinary system that consists of full reprocessing facilities for both LWR and FBR spent fuels, that is smaller LWR reprocessing facility, spent LWR fuel reduction, storage and supply of high proliferation resistant and high Pu density material that can flexibly respond to FBR introduction rate changes. The Pu balance was calculated under several cases, which revealed that the FFCI could supply enough Pu to FBR in any cases.

Journal Articles

Extraction of Am(VI) from Nitric Acid Solution Containing Phosphate Anion by TBP

; ; Kamoshida, Mamoru*; Sasahira, Akira*

Journal of Nuclear Science and Technology, 39(Suppl.3), p.317 - 320, 2002/11

None

Oral presentation

Development of flexible fuel cycle initiative, 1; General concept

Yamashita, Junichi*; Fukasawa, Tetsuo*; Kawamura, Fumio*; Hoshino, Kuniyoshi*; Sasahira, Akira*; Sato, Seichi*; Minato, Kazuo

no journal, , 

no abstracts in English

Oral presentation

Development of flexible fuel cycle initiative, 3; Uranium removal

Yamashita, Junichi*; Fukasawa, Tetsuo*; Kawamura, Fumio*; Hoshino, Kuniyoshi*; Sasahira, Akira*; Minato, Kazuo; Akabori, Mitsuo; Arai, Yasuo

no journal, , 

no abstracts in English

Oral presentation

Flexible fuel cycle initiative

Yamashita, Junichi*; Fukasawa, Tetsuo*; Kawamura, Fumio*; Hoshino, Kuniyoshi*; Sasahira, Akira*; Sato, Seichi*; Minato, Kazuo

no journal, , 

no abstracts in English

Oral presentation

Flexible fuel cycle R&D for the smooth FBR deployment, 4; Fundamental preparation test of simulated recycle material

Shirasu, Yoshiro; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo; Fukasawa, Tetsuo*; Sasahira, Akira*

no journal, , 

no abstracts in English

Oral presentation

Flexible fuel cycle R&D for the smooth FBR deployment, 9; Property investigation for simulated recycle material

Shirasu, Yoshiro; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo; Fukasawa, Tetsuo*; Sasahira, Akira*

no journal, , 

no abstracts in English

Oral presentation

Flexible fuel cycle R&D for the smooth FBR deployment, 14; Property investigation of thermal conductivity etc.

Shirasu, Yoshiro; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo; Fukasawa, Tetsuo*; Sasahira, Akira*

no journal, , 

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1