Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of field emission SEM to observe high radioactive irradiated fuels

Isozaki, Misaki; Sasaki, Shinji; Maeda, Koji; Katsuyama, Kozo

JAEA-Technology 2015-058, 28 Pages, 2016/03

JAEA-Technology-2015-058.pdf:23.51MB

During irradiation in the fast reactor "JOYO", the changes of fuel structures with the formation of central void occur in the uranium-plutonium mixed oxide fuels (MOX fuels) because of radial temperature gradient. The changes of element (U, Pu, and so on) distributions along radial direction proceed from these changes. Therefore, it is important to study the changes of fuel structures of the minute area in fuel pellet and the changes of element distribution behavior for development of fast reactor fuels. In order to make detailed observations of microstructure and elemental analyses of fuel samples, a field emission scanning electron microscope (FE-SEM) equipped with a wavelength-dispersive X-ray spectrometer (WDS) and an energy-dispersive X-ray spectrometer (EDS) were installed in Fuel Monitoring Facility (FMF). The samples of this FE-SEM are very high radioactivity because the samples contain the nuclear fuel elements (U, Pu, etc.), the fission products (Cs, Rh, etc.) and activation product (Co, Mn etc.). Owing to this, it is necessary to prevent leakage of radioactive materials (particularly, U, Pu is need tight accountancy in law) and to protect operators from radiation. In this installation of FE-SEM, it is selected JSM-7001F (made by JEOL) for base model. The notable modified points were as follows. (1) To protect operators from radiation, lead shields was installed around FE-SEM. (2) To prevent leakage of radioactive materials, the instrument was attached to a remote control air-tight sample transfer unit between a shielded hot cell and the FE-SEM and the instrument was fixing rigid structure without vibration damper. (3) The design and manufacture the lead shields with consideration of instrument maintainability. This paper was described the summary of FE-SEM, the notable modified points, the ways of FE-SEM installation, the result of performance test.

Journal Articles

Distribution of radioactive nuclides of boring core samples extracted from concrete structures of reactor buildings in the Fukushima Daiichi Nuclear Power Plant

Maeda, Koji; Sasaki, Shinji; Kumai, Misaki; Sato, Isamu; Suto, Mitsuo; Osaka, Masahiko; Goto, Tetsuo*; Sakai, Hitoshi*; Chigira, Takayuki*; Murata, Hirotoshi*

Journal of Nuclear Science and Technology, 51(7-8), p.1006 - 1023, 2014/07

 Times Cited Count:14 Percentile:72.55(Nuclear Science & Technology)

Since the start of the severe accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, concrete surfaces within the reactor buildings have been exposed to radioactive contaminants. Released radiation sources still remain too high to permit entry into some areas of the RBs to allow the damage to be assessed and to allow carrying out the restoration of lost safety functions, decommissioning activities, etc. In order to clarify the situation of this contamination in the RBs, 18 samples were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. Decontamination tests on the sample of Unit 2 were conducted to reduce the levels of radioactivity present near the sample surface. As a result of the tests, the level of radioactivity of the sample was reduced with the removal of 97% of the contamination present near the sample surface.

JAEA Reports

R&D of remote decontamination technique in reactor building (2-$$ textcircled{1} $$-1) towards the decommissioning of Fukushima Daiichi Nuclear Power plant; Results of Examinations of contaminated samples at JAEA hot laboratories

Maeda, Koji; Sasaki, Shinji; Kumai, Misaki; Sato, Isamu; Suto, Mitsuo; Osaka, Masahiko

JAEA-Research 2013-025, 123 Pages, 2014/01

JAEA-Research-2013-025-01.pdf:50.58MB
JAEA-Research-2013-025-02.pdf:61.94MB
JAEA-Research-2013-025-03.pdf:52.86MB
JAEA-Research-2013-025-04.pdf:61.52MB
JAEA-Research-2013-025-05.pdf:44.49MB

In order to clarify the situation of the contamination in the Fukushima Daiichi reactor buildings of Units 1, 2 and 3, selected samples were transported to the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. contaminants.

Journal Articles

Results of detailed analyses performed on boring cores extracted from the concrete floors of the Fukushima Daiichi Nuclear Power Plant reactor buildings

Maeda, Koji; Sasaki, Shinji; Kumai, Misaki; Sato, Isamu; Osaka, Masahiko; Fukushima, Mineo; Kawatsuma, Shinji; Goto, Tetsuo*; Sakai, Hitoshi*; Chigira, Takayuki*; et al.

Proceedings of International Nuclear Fuel Cycle Conference; Nuclear Energy at a Crossroads (GLOBAL 2013) (CD-ROM), p.272 - 277, 2013/09

Oral presentation

Ceramography and EPMA investigation of irradiation behavior of annular MOX pellets

Sasaki, Shinji; Isozaki, Misaki; Ishimi, Akihiro; Maeda, Koji

no journal, , 

Fuel rods containing annular MOX pellets were irradiated at over 400 W/cm to burnup of nearly 30,000 MWd/t in the experimental fast reactor, Joyo. The microstructural change and redistribution of Pu and U in the pellets were investigated by ceramography and EPMA.

Oral presentation

Restructuring behavior of annular irradiated fuel

Sasaki, Shinji; Isozaki, Misaki; Ishimi, Akihiro; Maeda, Koji

no journal, , 

no abstracts in English

Oral presentation

Development of removal technique for solid contaminants with ultra-fine bubbles for decommissioning

Nakahara, Masaumi; Watanabe, So; Kimura, Shuya; Sasaki, Misaki*; Inagaki, Hiromitsu*; Moriguchi, Tetsuji*

no journal, , 

A novel removal technique with ultra-fine bubbles has been proposed for decommissioning of nuclear facilities. The performance of removal technology with ultra-fine bubbles was evaluated in cold experiments with simulated contaminants precipitated Co oxides and hot experiments with radioactive contaminants.

7 (Records 1-7 displayed on this page)
  • 1