Refine your search:     
Report No.
 - 
Search Results: Records 1-15 displayed on this page of 15
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Sodium-cooled Fast Reactors

Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.

Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07

This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.

JAEA Reports

Conceptual design of multipurpose compact research reactor; Annual report FY2010 (Joint research)

Imaizumi, Tomomi; Miyauchi, Masaru; Ito, Masayasu; Watahiki, Shunsuke; Nagata, Hiroshi; Hanakawa, Hiroki; Naka, Michihiro; Kawamata, Kazuo; Yamaura, Takayuki; Ide, Hiroshi; et al.

JAEA-Technology 2011-031, 123 Pages, 2012/01

JAEA-Technology-2011-031.pdf:16.08MB

The number of research reactors in the world is decreasing because of their aging. However, the planning to introduce the nuclear power plants is increasing in Asian countries. In these Asian countries, the key issue is the human resource development for operation and management of nuclear power plants after constructed them, and also the necessity of research reactor, which is used for lifetime extension of LWRs, progress of the science and technology, expansion of industry use, human resources training and so on, is increasing. From above backgrounds, the Neutron Irradiation and Testing Reactor Center began to discuss basic concept of a multipurpose low-power research reactor for education and training, etc. This design study is expected to contribute not only to design tool improvement and human resources development in the Neutron Irradiation and Testing Reactor Center but also to maintain and upgrade the technology on research reactors in nuclear power-related companies. This report treats the activities of the working group from July 2010 to June 2011 on the multipurpose low-power research reactor in the Neutron Irradiation and Testing Reactor Center and nuclear power-related companies.

Journal Articles

Fabrication of polymer optical waveguides for the 1.5-$$mu$$m band using focused proton beam

Miura, Kenta*; Machida, Yuki*; Uehara, Masato*; Kiryu, Hiromu*; Ozawa, Yusuke*; Sasaki, Tomoyuki*; Hanaizumi, Osamu*; Sato, Takahiro; Ishii, Yasuyuki; Koka, Masashi; et al.

Key Engineering Materials, 497, p.147 - 150, 2012/00

 Times Cited Count:7 Percentile:95.12(Engineering, Electrical & Electronic)

Journal Articles

Fabrication of polymer optical waveguides for the 1.5-$$mu$$m band using focused proton beam

Miura, Kenta*; Machida, Yuki*; Uehara, Masato*; Kiryu, Hiromu*; Ozawa, Yusuke*; Sasaki, Tomoyuki*; Hanaizumi, Osamu*; Sato, Takahiro; Ishii, Yasuyuki; Koka, Masashi; et al.

Key Engineering Materials, 497, p.147 - 150, 2011/12

 Times Cited Count:6 Percentile:2.48

Journal Articles

A High pressure experiment of powder neutron diffraction on the HRPD at JRR-3

Komatsu, Kazuki*; Arima, Hiroshi*; Kagi, Hiroyuki*; Okuchi, Takuo*; Sasaki, Shigeo*; Yamauchi, Hiroki; Fukazawa, Hiroshi; Igawa, Naoki; Utsumi, Wataru; Kamiyama, Takashi*

Koatsuryoku No Kagaku To Gijutsu, 18(2), p.170 - 172, 2008/05

In this short communication, we report neutron diffractions under high pressure from lead powder in a Paris-Edinburgh cell at the High Resolution Powder Diffractometer (HRPD) installed at JRR-3, Ibaraki, Japan. This is the kick-off experiment in Japan as a high pressure powder diffraction study using reactor neutron source.

Journal Articles

Possible unconventional superconductivity and weak magnetism in Na$$_x$$CoO$$_2$$$$cdot$$yH$$_2$$O probed by $$mu$$SR

Higemoto, Wataru; Oishi, Kazuki; Koda, Akihiro*; Kadono, Ryosuke*; Sakurai, Hiroya*; Takada, Kazunori*; Muromachi, Eiji*; Sasaki, Takayoshi*

Physica B; Condensed Matter, 374-375, p.274 - 277, 2006/03

 Times Cited Count:6 Percentile:31.23(Physics, Condensed Matter)

no abstracts in English

Oral presentation

High-pressure powder neutron diffraction measurements using PE cell at JRR

Arima, Hiroshi; Komatsu, Kazuki*; Kagi, Hiroyuki*; Okuchi, Takuo*; Sasaki, Shigeo*; Yamauchi, Hiroki; Fukazawa, Hiroshi; Igawa, Naoki; Utsumi, Wataru; Kamiyama, Takashi*

no journal, , 

For the forward planning of high-pressure neutron diffraction study, it is meaningful to consider the use of Paris-Edinburgh (PE) high pressure cells. We conducted a first experiment for high-P powder diffraction using PE cells on the high resolution powder diffractometer (HRPD) in the reactor neutron source: JRR-3. Lead particle (Nilaco Co., 99.9999%), which has a relatively high scattering length and low absorption for neutron, was used as a sample in order to obtain the intensity data as efficient as possible. A couple of cubic BN anvils and a TiZr null metal gasket were used in order to avoid scattering from surrounding materials. The intensities of a 111 reflection, which is the strongest peak in lead sample, are 250 counts/h at ambient pressure and 80 counts/h at 30 tonnes. The pressure estimated by the obtained lattice constants at 30 tonnes was 2.9(1) GPa. These results allows us to estimate how long beam time is necessary for the potential experiments.

Oral presentation

Robustness estimation of neutron experimental devices against mutual power noise at experimental hall, MLF/J-PARC

Tanaka, Hiromichi; Yoshida, Noboru; Ito, Yukihiro; Kambara, Wataru; Iwahashi, Takaaki; Katabira, Asahiko*; Goto, Tsuyoshi*; Muroya, Koji*; Sasaki, Taizo*; Machida, Koichi*; et al.

no journal, , 

For the open use of MLF neutron source, robustness (senses including tolerance, stability, acceptable outer affairs) of neutron devices against power noise must be estimated for surely acquition of neutron experimental data. For this purpose, we measure the groundline and power-line shape synclonized with many events, such as crane, chopper, neutron shutter and them on. This data is very usable to solve some accident, such as shutter keeping close. In this presentation, we will show some our solutions.

Oral presentation

High-pressure neutron diffraction experiments at TAKUMI in J-PARC

Abe, Jun; Hattori, Takanori; Arima, Hiroshi; Sano, Asami; Fukazawa, Hiroshi; Utsumi, Wataru; Komatsu, Kazuki*; Arakawa, Masashi*; Iizuka, Riko*; Kagi, Hiroyuki*; et al.

no journal, , 

In order to confirm the feasibility of high-pressure neutron diffraction at TAKUMI, we have performed a number of R&Ds using a various high-pressure devices. Optimization of materials such as anvil and pressure medium and developments of collimators have made possible reduction of background and contamination noise. Incident and diffracted neutron beams travel through high-pressure device, which causes attenuation of neutron. We investigated the method of attenuation correction.

Oral presentation

High-pressure activities in the new pulsed neutron source J-PARC

Hattori, Takanori; Arima, Hiroshi; Sano, Asami; Abe, Jun; Honda, Mitsunori; Fukazawa, Hiroshi; Utsumi, Wataru; Okuchi, Takuo*; Ono, Yoshiki*; Sasaki, Shigeo*; et al.

no journal, , 

The high-pressure neutron experiments above 10 GPa are limited so far due to the small neutron flux, which is insufficient for tiny high-pressure sample. Recent construction of the intense pulsed neutron source around the world has changed the situation. Inspired by the new Japanese pulsed neutron source JSNS at J-PARC, we started the high-P neutron experiments at the already operated beamlines (TAKUMI, NOVA) and the construction of the new beamline dedicated for high-pressure use (PLANET). This talk introduces these activities.

Oral presentation

Powder neutron diffraction study using high-pressure cells at J-PARC/TAKUMI

Abe, Jun; Arima, Hiroshi; Hattori, Takanori; Sano, Asami; Fukazawa, Hiroshi; Utsumi, Wataru; Komatsu, Kazuki*; Arakawa, Masashi*; Iizuka, Riko*; Kagi, Hiroyuki; et al.

no journal, , 

We have performed high-pressure neutron diffraction experiments at TAKUMI in J-PARC. Three types of high-pressure devices are used, Paris-Edinburgh Press, Palm cubic anvil cell and NPD-DAC. Optimization of materials such as anvil and pressure medium and developments of collimators have made possible reduction of background and contamination noise. Incident and diffracted neutron beams travel through high-pressure device, which causes attenuation of neutron. We have studied the method of attenuation correction and analyzed crystal structure using corrected neutron diffraction pattern.

Oral presentation

Fundamental study of fabrication of a light waveguide using proton beam writing

Miura, Kenta*; Sato, Takahiro; Koka, Masashi; Ishii, Yasuyuki; Takano, Katsuyoshi; Kada, Wataru; Yamazaki, Akiyoshi; Yokoyama, Akihito; Kamiya, Tomihiro; Uehara, Masato*; et al.

no journal, , 

no abstracts in English

Oral presentation

Fabrication of PMMA film waveguides utilizing proton beam writing

Miura, Kenta*; Sato, Takahiro; Ishii, Yasuyuki; Koka, Masashi; Machida, Yuki*; Uehara, Masato*; Kiryu, Hiromu*; Takano, Katsuyoshi*; Okubo, Takeru; Yamazaki, Akiyoshi; et al.

no journal, , 

Oral presentation

Medical RI production using domestic nuclear infrastructures for self-sustenance, 5; Ac-225 production using the experimental fast reactor Joyo

Sano, Aaru; Maeda, Shigetaka; Itagaki, Wataru; Sasaki, Shinji; Sasaki, Yuto*; Takaki, Naoyuki*

no journal, , 

Ac-225 is attracting attention as an alpha emitting medical radioisotope. Since its demand is expected to increase, domestic production of Ac-225 is required from the viewpoint of medical research and economic security of Japan. To establish the technical bases for the Ac-225 production, JAEA has evaluated the radioactivity can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. This study has revealed that Joyo can sufficiently produce Ac-225 as a raw material for pharmaceuticals.

Oral presentation

R&D on medical RI production using domestic nuclear infrastructures to achieve self-preparedness (2), 6; RI production using the experimental fast reactor Joyo

Sasaki, Yuto; Sano, Aaru; Itagaki, Wataru; Maeda, Shigetaka; Takaki, Naoyuki*

no journal, , 

no abstracts in English

15 (Records 1-15 displayed on this page)
  • 1