Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 84

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Magnification of a polarization angle with a Littrow layout brazed grating

Sasao, Hajime; Arakawa, Hiroyuki*; Kubo, Hirotaka; Kawano, Yasunori; Itami, Kiyoshi

Review of Scientific Instruments, 85(8), p.086106_1 - 086106_3, 2014/08

 Times Cited Count:2 Percentile:85.32(Instruments & Instrumentation)

Journal Articles

Temporal contrast enhancement of petawatt-class laser pulses

Kiriyama, Hiromitsu; Shimomura, Takuya; Sasao, Hajime; Nakai, Yoshiki*; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Pirozhkov, A. S.; Mori, Michiaki; Fukuda, Yuji; et al.

Optics Letters, 37(16), p.3363 - 3365, 2012/08

 Times Cited Count:33 Percentile:13.05(Optics)

We demonstrate the temporal contrast enhancement in a petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. An extra saturable absorber, introduced downstream a low gain optical parametric chirped-pulse amplification (OPCPA) preamplifier, has improved the temporal contrast in the system to 1.4$$times$$10$$^{12}$$ on the sub-nanosecond time scale at 70 TW power level. We have achieved 28 J of uncompressed broadband output energy with this system, indicating the potential for reaching peak powers near 600 TW.

Journal Articles

Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system

Ogura, Koichi; Nishiuchi, Mamiko; Pirozhkov, A. S.; Tanimoto, Tsuyoshi*; Sagisaka, Akito*; Esirkepov, T. Z.; Kando, Masaki; Shizuma, Toshiyuki; Hayakawa, Takehito; Kiriyama, Hiromitsu; et al.

Optics Letters, 37(14), p.2868 - 2870, 2012/07

 Times Cited Count:71 Percentile:3.2(Optics)

Using high contrast (10$$^{10}$$:1) and high intensity (10$$^{21}$$ W/cm$$^{2}$$) laser pulse with the duration of 40 fs from OPCPA/Ti:Sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.

Journal Articles

Complementary characterization of radioactivity produced by repetitive laser-driven proton beam using shot-to-shot proton spectral measurement and direct activation measurement

Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.

Japanese Journal of Applied Physics, 51(4), p.048003_1 - 048003_2, 2012/04

 Times Cited Count:2 Percentile:89.21(Physics, Applied)

A proton beam driven by a repetitive high-intensity-laser is utilized to induce a $$^{7}$$Li(p,n)$$^{7}$$Be nuclear reaction. The total activity of $$^{7}$$Be are evaluated by two different methods. The activity obtained measuring the decay $$gamma$$-rays after 1912 shots at 1 Hz is 1.7$$pm$$0.2 Bq. This is in good agreement with 1.6$$pm$$0.3 Bq evaluated from the proton energy distribution measured using a time-of-flight detector and the nuclear reaction cross-sections. We conclude that the production of activity can be monitored in real time using the time-of-flight-detector placed inside a diverging proton beam coupled with a high-speed signal processing system.

Journal Articles

Design considerations for dispersion control with a compact bonded grism stretcher for broadband pulse amplification

Kiriyama, Hiromitsu; Sasao, Hajime; Sugiyama, Akira; Ertel, K.*

ISRN Optics (Internet), 2012, p.120827_1 - 120827_4, 2012/00

We report on the design of a compact grism-pair stretcher for a near-infrared non-collinear optical parametric chirped-pulse amplification (OPCPA) system. The grisms are produced by bonding a grating to a prism using a resin. The stretcher is capable of controlling a bandwidth of over 300 nm, which is suitable for parametric amplification of few-cycle pulses. After amplification, pulses can be compressed by the dispersion of optical glass and the residual group-delay can be compensated with an acousto-optic programmable dispersive filter (AOPDF).

Journal Articles

Laser R&D project in this 5-year term

Sugiyama, Akira; Kiriyama, Hiromitsu; Ochi, Yoshihiro; Mori, Michiaki; Tanaka, Momoko; Sasao, Fumitaka; Kosuge, Atsushi; Okada, Hajime

JAEA-Conf 2011-001, p.15 - 18, 2011/03

Main theme of our group in this middle term JAEA program is a development of high-averaged power short pulse laser system pumped by LDs (laser diodes). To realize this next term laser system, we have just started considering a Yb doped ceramics laser with a several members of KPSI. We have also developed a laser system named QUADRA (high-Quality Ultra ADvanced RAdiation Sources) in C-Phost program. In the first term up to FYH22, essential studies for QUADRA have been investigated. In the second term, QUADRA development will be merged with the next term laser system in JAEA to produce high powered THz radiation. In addition to these developments, we support to improve the performances of conventional high-power laser system, J-KAREN, for the requirement of advanced application studies in this middle term JAEA program.

Journal Articles

Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline

Yogo, Akifumi; Maeda, Takuya; Hori, Toshihiko; Sakaki, Hironao; Ogura, Koichi; Nishiuchi, Mamiko; Sagisaka, Akito; Kiriyama, Hiromitsu; Okada, Hajime; Kanazawa, Shuhei; et al.

Applied Physics Letters, 98(5), p.053701_1 - 053701_3, 2011/02

 Times Cited Count:76 Percentile:6.02(Physics, Applied)

Journal Articles

Development of a high-contrast, high beam-quality, high-intensity laser

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki*; Shimomura, Takuya; Sasao, Hajime*; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Kondo, Shuji; Kanazawa, Shuhei; et al.

Reza Kenkyu, 38(9), p.669 - 675, 2010/09

This paper reviews the temporal contrast and spatial beam quality improvement techniques in a high intensity Ti:sapphire laser system that is based on chirped-pulse amplification (CPA). We describe a low gain optical parametric chirped-pulse amplification (OPCPA) preamplifier that uses high energy, clean pulse seeding and is shown to significantly improve the contrast to better than 10$$^{-10}$$-10$$^{-11}$$ relative to the peak of the main femtosecond pulse. We also report the use of a diffractive optical element for beam homogenization of a 100 J level Nd:glass green pump laser, achieving a flat-topped spatial profile with a filling factor near 80 %.

Journal Articles

Demonstration of a high-efficiency, broadband optical parametric chirped-pulse amplification as a front-end for a high intensity laser

Kosuge, Atsushi; Kiriyama, Hiromitsu; Shimomura, Takuya*; Tanoue, Manabu*; Kanazawa, Shuhei; Ochi, Yoshihiro; Mori, Michiaki; Tanaka, Momoko; Okada, Hajime; Sasao, Hajime*; et al.

Reza Kenkyu, 38(9), p.706 - 710, 2010/09

High conversion efficiency of optical parametric chirped-pulse amplification (OPCPA) is demonstrated with the use of a commercial frequency-doubled Q-Switched Nd:YAG laser. In the high energy seeded OPCPA, we have achieved a pump-to-signal conversion efficiency of 28%. Our result represents, to our knowledge, the most efficient OPCPA to date pumped by a commercial frequency-doubled Q-switched Nd:YAG laser.

Journal Articles

Test beam-line for laser-driven proton therapy

Sakaki, Hironao; Nishiuchi, Mamiko; Hori, Toshihiko; Bolton, P.; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Pirozhkov, A. S.; Orimo, Satoshi; Kondo, Kiminori; et al.

Proceedings of 7th Annual Meeting of Particle Accelerator Society of Japan (DVD-ROM), p.312 - 315, 2010/08

The beam transport test is carried out through the test beam line of the laser-driven proton accelerator which consists of the phase rotation cavity, PMQ, and bending magnet. The laser system used is J-KAREN at JAEA. The final transmitted bunch duration and transverse profile are well predicted by the PARMILA particle transport code by assuming relatively low initial current of the proton beam. The most probable explanation for this is the space charge neutralization by the laser-plasma-electrons.

Journal Articles

Measured and simulated transport of 1.9 MeV laser-accelerated proton bunches through an integrated test beam line at 1 Hz

Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Bolton, P.; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Mori, Michiaki; Orimo, Satoshi; Pirozhkov, A. S.; et al.

Physical Review Special Topics; Accelerators and Beams, 13(7), p.071304_1 - 071304_7, 2010/07

 Times Cited Count:25 Percentile:16.63(Physics, Nuclear)

A laser-driven repetition-rated 1.9 MeV proton beam line composed of permanent quadrupole magnets (PMQs), a radio frequency (rf) phase rotation cavity, and a tunable monochromator is developed to evaluate and to test the simulation of laser-accelerated proton beam transport through an integrated system for the first time. In addition, the proton spectral modulation and focusing behavior of the rf phase rotationcavity device is monitored with input from a PMQ triplet. In the 1.9 MeV region we observe very weakproton defocusing by the phase rotation cavity. The final transmitted bunch duration and transverse profile are well predicted by the PARMILA particle transport code. The transmitted proton beam duration of 6 ns corresponds to an energy spread near 5% for which the transport efficiency is simulated to be 10%. The predictive capability of PARMILA suggests that it can be useful in the design of future higher energy transport beam lines as part of an integrated laser-driven ion accelerator system.

Journal Articles

High-contrast (10$$^{10}$$), high-intensity (500 TW) J-KAREN laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; et al.

JAEA-Conf 2010-002, p.18 - 21, 2010/06

We have developed a femtosecond high intensity laser system, which combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) techniques, that produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front-end in the system, for the final compressed pulse (without pumping the booster amplifier) we found that the temporal contrast in this system exceeds 10$$^{10}$$ on the sub-nanosecond timescale, and is near 10$$^{12}$$ on the nanosecond timescale before the main femtosecond pulse. Using diffractive optical elements for beam homogenization of 100-J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with near-perfect top-hat intensity distributions.

Journal Articles

High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanoue, Manabu*; Kanazawa, Shuhei; Wakai, Daisuke*; Sasao, Fumitaka*; Okada, Hajime; et al.

Optics Letters, 35(10), p.1497 - 1499, 2010/05

 Times Cited Count:80 Percentile:3.64(Optics)

OPCPA (Optical parametric chirped-pulse amplification) operation with low gain by seeding with high energy, clean pulses is shown to significantly improve the contrast to better than $$10^{-10}$$-$$10^{-11}$$ in a high intensity Ti:sapphire laser system that is based on chirped pulse amplification. In addition to the high contrast broadband high energy output from the final amplifier is achieved with a flat-topped spatial profile of filling factor near 77%. This is the result of pump beam spatial profile homogenization with diffractive optical elements. Final pulse energies exceed 30-Joules indicating capability for reaching peak powers in excess of 500-TW.

Journal Articles

Laser-driven proton accelerator for medical application

Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Bolton, P.; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Mori, Michiaki; Orimo, Satoshi; Pirozhkov, A. S.; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.88 - 90, 2010/05

The concept of a compact ion particle accelerator has become attractive in view of recent progress in laser-driven ion acceleration. We report here the recent progress in the laser-driven proton beam transport at the Photo Medical Research Center (PMRC) at JAEA, which is established to address the challenge of laser-driven ion accelerator development for ion beam cancer therapy.

Journal Articles

High spatiotemporal-quality petawatt-class laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Sasao, Hajime; Tanaka, Momoko; Ochi, Yoshihiro; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; et al.

Applied Optics, 49(11), p.2105 - 2115, 2010/04

 Times Cited Count:37 Percentile:13.44(Optics)

We have developed a femtosecond high intensity laser system, which combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric chirped-pulse amplification (OPCPA) techniques, that produces more than 30-J broadband output energy, indicating the potential for achieving peak powers in excess of 500-TW. With a cleaned high-energy seeded OPCPA preamplifier as a front-end in the system, for the compressed pulse without pumping the final amplifier we found that the temporal contrast in this system exceeds 10$$^{10}$$ on the sub-nanosecond timescales, and is near 10$$^{12}$$ on the nanosecond timescale prior to the peak of the main femtosecond pulse. Using diffractive optical elements for beam homogenization of 100-J level high-energy Nd:glass green pump laser in a Ti:sapphire final amplifier, we have successfully generated broadband high-energy output with a near-perfect top-hat-like intensity distribution.

Journal Articles

"J-KAREN"; High intensity, high contrast laser

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya*; Tanoue, Manabu*; Okada, Hajime; Sasao, Hajime; Wakai, Daisuke*; Kondo, Shuji; Kanazawa, Shuhei; et al.

JAEA-Conf 2009-007, p.97 - 100, 2010/03

no abstracts in English

Journal Articles

27th report of ITPA topical group meeting

Osakabe, Masaki*; Shinohara, Koji; Toi, Kazuo*; Todo, Yasushi*; Hamamatsu, Kiyotaka; Murakami, Sadayoshi*; Yamamoto, Satoshi*; Idomura, Yasuhiro; Sakamoto, Yoshiteru; Tanaka, Kenji*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 85(12), p.839 - 842, 2009/12

no abstracts in English

Journal Articles

High-energy, spatially flat-top green pump laser by beam homogenization for petawatt scale Ti:sapphire laser systems

Tanaka, Momoko; Kiriyama, Hiromitsu; Ochi, Yoshihiro; Nakai, Yoshiki; Sasao, Hajime; Okada, Hajime; Daido, Hiroyuki; Bolton, P.; Kawanishi, Shunichi

Optics Communications, 282(22), p.4401 - 4403, 2009/11

 Times Cited Count:9 Percentile:52.47(Optics)

We have demonstrated that we can homogenize the spatial profile of a high-energy green laser pulse used for pumping a petawatt scale Ti:sapphire amplifier. The second harmonic of a high-energy, large-aperture Nd:glass laser system generates laser emission at a green wavelength with 75 J single pulse energy. Using a diffractive optical element for beam homogenization, we have obtained a highly spatially uniform flat-top second harmonic profile.

Journal Articles

Electron optical injection with head-on and countercrossing colliding laser pulses

Kotaki, Hideyuki; Daito, Izuru; Kando, Masaki; Hayashi, Yukio; Kawase, Keigo; Kameshima, Takashi*; Fukuda, Yuji; Homma, Takayuki; Ma, J.*; Chen, L. M.*; et al.

Physical Review Letters, 103(19), p.194803_1 - 194803_4, 2009/11

 Times Cited Count:50 Percentile:11.24(Physics, Multidisciplinary)

Journal Articles

Generation of above 10$$^{10}$$ temporal contrast, above 10$$^{20}$$W/cm$$^2$$ peak intensity pulses at a 10 Hz repetition rate using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya; Tanoue, Manabu*; Okada, Hajime; Kondo, Shuji; Kanazawa, Shuhei; Sagisaka, Akito; Daito, Izuru; et al.

AIP Conference Proceedings 1153, p.3 - 6, 2009/07

We demonstrate a high-contrast, high-intensity double chirped-pulse amplification (CPA) Ti:sapphire laser system using an optical parametric chirped-pulse amplifier (OPCPA) as a preamplifier. By injecting cleaned microjoule seed pulses into the OPCPA, a temporal contrast greater than 10$$^{10}$$ within picosecond times before the main femtosecond pulse is demonstrated with the output pulse energy of 1.7 J and pulse duration of 30 fs, corresponding to a peak power of 60 TW at a 10 Hz repetition rate. This system uses a cryogenically-cooled Ti:sapphire final amplifier and generates focused peak intensities in excess of 10$$^{20}$$ W/cm$$^2$$.

84 (Records 1-20 displayed on this page)