Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Laser electron acceleration in cm-scale capillary-discharge plasma channel

Kameshima, Takashi; Kotaki, Hideyuki; Kando, Masaki; Daito, Izuru; Kawase, Keigo; Fukuda, Yuji; Chen, L. M.*; Homma, Takayuki; Kondo, Shuji; Esirkepov, T. Z.; et al.

no journal, , 

The acceleration method of laser plasma electron acceleration has very strong electric field, however, the acceleration length is veryshort. Hence, the energy gain of electron beams were confined to be approximately 100 MeV. Recently, this problem was solved by using discharge capillary. The feature of plasma was used that high dense plasma has low refractive index. Distributing plasma inside capillary as low dense plasma is in the center of capillary and high dense plasma is in the external side of capillary can make a laser pulse propaget inside capillary with initial focal spot size. Experiments with capillary were performed in China Academy of Engineering Physics (CAEP) and Japan Atomic Energy Agency (JAEA). We obtained the results of 4.4 J laser pulse optical guiding in 4 cm capillary and 0.56 GeV electron production in CAEP in 2006, and 1 J laser pulse optical guiding in 4 cm capillary and electron beams productions.

Oral presentation

Profile measurement and analysis of ablative-capillary-discharge plasma channel

Kameshima, Takashi; Kotaki, Hideyuki; Kando, Masaki; Daito, Izuru; Kawase, Keigo; Fukuda, Yuji; Chen, L.*; Homma, Takayuki; Kondo, Shuji; Esirkepov, T. Z.; et al.

no journal, , 

The technology of laser optical guiding is important for the laser plasma electron acceleration in order to improve electron beams's energy gain, because the duration of laser focusing represents the length of the laser wakefield. In present, capillary discharge is promising to generate a plasma channel for a laser pulse. Plasma channel in the capillary has a refraction structure in the radial direction to guide a laser pulse, In addition, it is possible to generate a cm-scale plasma, and therefore, the length of the laser wakefield is significantly extended. In this presentation, we reports the investigation of the ablative capillary. The profile measurement and analysis result are presented.

2 (Records 1-2 displayed on this page)
  • 1