Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 243

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Atmospheric ionizations by solar X-rays, solar protons, and radiation belt electrons in September 2017 space weather event

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Sato, Kaoru*; Tsutsumi, Masaki*; Tanaka, Yoshimasa*; Ogawa, Yasunobu*; Sato, Tatsuhiko

Space Weather, 21(12), p.e2023SW003651_1 - e2023SW003651_11, 2023/12

 Times Cited Count:0 Percentile:0.01(Astronomy & Astrophysics)

Comprehensive understandings of their global impact on the atmosphere require whole pictures of spatio-temporal distributions of the ionization due to them. We estimate the altitude profiles of the ionization rate during the space weather event occurred in September 2017 by using the Particle and Heavy Ion Transport code System (PHITS) with input of the particle fluxes obtained by satellites. The estimates are then compared with measurements of the ionization altitude, ionization intensity, and electron density by the radars in the polar region such as the PANSY radar at Syowa Station and the EISCAT in Tromso, Norway. We conclude that the PHITS simulation results reproduce those ionizations measured by ground-based instruments with inputs of observed ionization sources by satellites within a factor of 2.

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and hydrogen production facility, 1; Overview of the HTTR heat application test plan to establish high safety coupling technology

Nomoto, Yasunobu; Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 Pages, 2023/05

Journal Articles

Development plan for coupling technology between high temperature gas-cooled reactor HTTR and Hydrogen Production Facility, 2; Development plan for coupling equipment between HTTR and Hydrogen Production Facility

Mizuta, Naoki; Morita, Keisuke; Aoki, Takeshi; Okita, Shoichiro; Ishii, Katsunori; Kurahayashi, Kaoru; Yasuda, Takanori; Tanaka, Masato; Isaka, Kazuyoshi; Noguchi, Hiroki; et al.

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 6 Pages, 2023/05

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

Journal Articles

Mesospheric ionization during substorm growth phase

Murase, Kiyoka*; Kataoka, Ryuho*; Nishiyama, Takanori*; Nishimura, Koji*; Hashimoto, Taishi*; Tanaka, Yoshimasa*; Kadokura, Akira*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Ogawa, Yasunobu*; et al.

Journal of Space Weather and Space Climate (Internet), 12, p.18_1 - 18_16, 2022/06

 Times Cited Count:1 Percentile:22.72(Astronomy & Astrophysics)

We identified two energetic electron precipitation (EEP) events during the growth phase of moderate substorms and estimated the mesospheric ionization rate for an EEP event for which the most comprehensive dataset from ground-based and space-born instruments was available. The mesospheric ionization signature reached below 70 km altitude and continued for ~15 min until the substorm onset, as observed by the PANSY radar and imaging riometer at Syowa Station in the Antarctic region. We also used energetic electron flux observed by the Arase and POES 15 satellites as the input for the air-shower simulation code PHITS to quantitatively estimate the mesospheric ionization rate. Combining the cutting-edge observations and simulations, we shed new light on the space weather impact of the EEP events during geomagnetically quiet times, which is important to understand the possible link between the space environment and climate.

Journal Articles

Variation of internal doses caused by differences in physical characteristics between the average Japanese and the ICRP's reference man which is based on the standard data of Caucasians in the dosimetric methodology in conformity to the 2007 Recommendations

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

Journal of Nuclear Science and Technology, 59(5), p.656 - 664, 2022/05

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

It is known that internal doses depend on the physical characteristics of an evaluation subject. Internal dose coefficients provided by the International Commission on Radiological Protection (ICRP) are evaluated using the characteristics of the standard Caucasian. It is important to grasp the variations of doses due to the differences in characteristics between Japanese and Caucasian when the dose coefficients of ICRP are applied to Japanese. This study evaluated dose coefficients using specific absorbed fraction (SAF) data based on the average adult Japanese physique which was developed by modification of the existing Japanese SAF data with additional calculations to make the existing data fit to the current dosimetric methodology of ICRP and compared them to those provided by ICRP. As a result, the discrepancies in dose coefficients were smaller than plus or minus 10% in most intake conditions. However, some intake conditions indicated varieties over 40% due to the differences in organ masses, amount of adipose tissues around the thoracic cavity, and so on. This information is useful in application of ICRP's dose coefficients to population of which physical characteristics are different from those of Caucasian. Further, the Japanese SAF data is published as an appendix of this paper.

Journal Articles

Organ dose reconstruction applicable for a Japanese nuclear worker cohort; J-EPISODE

Furuta, Hiroshige*; Sato, Kaoru; Nishide, Akemi*; Kudo, Shinichi*; Saigusa, Shin*

Health Physics, 121(5), p.471 - 483, 2021/11

 Times Cited Count:1 Percentile:16.35(Environmental Sciences)

Low dose radiation induced "health effects" containing cancer risk for a Japanese radiation worker cohort is epidemiologically evaluated using the personal dose equivalent (Hp(10)). On the other hand, Hp(10) is not recommended for epidemiological evaluation of cancer risks, since the Hp(10) is widely used for radiological protection purposes. In addition, the cancer risk depends on organ doses rather than Hp(10). Thus, we developed a new method for estimating organ doses from Hp(10) of radiation workers. The developed method enables epidemiological analysis against Japanese radiation workers by considering the response characteristics of personal dosimeters, exposure geometry and energy, and body size of radiation workers in Japan. In the future, we will reconstruct organ dose conversion factor and will evaluate the risk of cancer mortality and morbidity using the organ dose in Japan.

JAEA Reports

Effective dose coefficients for internal exposure dose assessment in accordance with ICRP 2007 recommendations (Contract research)

Takahashi, Fumiaki; Manabe, Kentaro; Sato, Kaoru

JAEA-Review 2020-068, 114 Pages, 2021/03

JAEA-Review-2020-068.pdf:2.61MB

Radiation safety regulations have been currently established based on the 1990Recommendation by the International Commission on Radiological Protection (ICRP) in Japan. Meanwhile, ICRP released the 2007 Recommendation that replaces the 1990 Recommendation. Thus, the Radiation Council, which is established under the Nuclear Regulation Authority (NRA), has made discussions to incorporate the purpose of the 2007 Recommendation into Japanese regulations for radiation safety. As ICRP also has published effective dose coefficients for internal exposure assessment in accordance with the 2007recommendation, the technical standards are to be revised for the internal exposure assessment method in Japan. Currently, not all of the effective doses have been published to revise concentration limits for internal exposure protections of workers and public. The published effective dose coefficients are applied to radionuclides which are important in radiation protection for internal exposure of a worker. Thus, we review new effective dose coefficients as well as basic dosimetry models and data based upon Occupational Intakes of Radionuclides (OIR) parts 2, 3 and 4 that have been published from 2016 to 2019 by ICRP. In addition, issues are sorted out to provide information for revision of the technical standards for internal exposure assessment based on the 2007 Recommendations in future.

Journal Articles

Neutron transmission measurement and simulation of Ta-181 for neutron resonance thermometry

Hara, Kaoru*; Asako, Minoru*; Kai, Tetsuya; Sato, Hiroaki*; Kamiyama, Takashi*

Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2019), Vol.2, p.1500 - 1501, 2020/08

Journal Articles

Transient ionization of the mesosphere during auroral breakup; Arase satellite and ground-based conjugate observations at Syowa Station

Kataoka, Ryuho*; Nishiyama, Takanori*; Tanaka, Yoshimasa*; Kadokura, Akira*; Uchida, Herbert Akihito*; Ebihara, Yusuke*; Ejiri, Mitsumu*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Sato, Kaoru*; et al.

Earth, Planets and Space (Internet), 71(1), p.9_1 - 9_10, 2019/12

 Times Cited Count:8 Percentile:40.25(Geosciences, Multidisciplinary)

Transient ionization of the mesosphere was detected at around 65 km altitude during the isolated auroral expansion occurred at 2221-2226 UT on June 30, 2017. A general-purpose Monte Carlo particle transport code PHITS suggested that significant ionization is possible in the middle atmosphere due to auroral X-rays from the auroral electrons of $$<$$10 keV.

Journal Articles

Development of a function calculating internal dose coefficients based on ICRP 2007 Recommendations

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

BIO Web of Conferences (Internet), 14, p.03011_1 - 03011_2, 2019/05

 Times Cited Count:0 Percentile:0.21(Public, Environmental & Occupational Health)

Dose coefficients, which are committed effective dose per unit intake of radionuclides, are fundamental amounts for dose estimation and protection standards against internal exposures. In this study, we built a calculation function of dose coefficients using the latest dosimetric models and data as a part of development of internal dosimetry code in accordance with 2007 Recommendations of the International Commission of Radiological Protection (ICRP). Quality of the function was assured by comparing the results generated by the function to values recorded in a database of dose coefficients for workers provided by ICRP. In the presentation, we will report the results of quality assurance and the future plans of code development.

Journal Articles

Estimating internal dose coefficients of short-lived radionuclides in accordance with ICRP 2007 Recommendations

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

Journal of Nuclear Science and Technology, 56(5), p.385 - 393, 2019/05

 Times Cited Count:3 Percentile:31.89(Nuclear Science & Technology)

At high energy accelerator facilities, various radionuclides are produced by nuclear reactions of high energy particles with structure and/or ambient air of the facilities. Consequently, the radionuclides are potential sources of internal exposure for works of the facilities. However, the International Commission on Radiological Protection (ICRP) do not provide dose coefficients, which are committed effective doses per intake, for the short-lived radionuclides whose half-lives are shorter than 10 minutes in accordance with the ICRP 2007 Recommendations. Then, we estimated the dose coefficients for inhalation and ingestion of these short-lived radionuclides in accordance with the ICRP 2007 Recommendations. In addition, we compared the dose coefficients with those in accordance with the ICRP 1990 Recommendations. As a result, a decreasing tendency was shown in the dose coefficients for inhalation cases; an increasing tendency was observed in those for ingestion cases. It was found that these changes in dose coefficients were mainly caused by the revision of the dose calculation procedures, alimentary tract models. The result of this study will be useful for planning of radiation protection at the high energy facilities.

Journal Articles

Construction of adult Japanese voxel phantoms with various body sizes and their applications to evaluation of organ doses due to external photon irradiation

Sato, Kaoru; Takahashi, Fumiaki

Hoken Butsuri, 52(4), p.247 - 258, 2017/12

Organ doses for dose assessment in radiation protection are derived from ICRP reference phantoms (Male:RCP-AM, Female:RCP-AF) with standard Caucasian physiques. In adult, Japanese are smaller than Caucasian. To study impact of differences in physiques between Caucasian and Japanese on organ doses, we previously constructed Japanese phantoms (Male:JM-103, Female:JF-103) with average adult Japanese physiques. In addition, adult Japanese physiques have also wide distribution. Thus, we newly modeled DJM (Male) and DJF (Female) with 8 physiques by changing the perimeters of JM-103 and JF-103. Organ doses due to external photon irradiation of DJM and DJF were calculated, and were compared with those of RCP-AM and RCP-AF. In ISO geometry at 0.3 MeV, it was found that doses of breast, colon, lung, stomach, gonad, urinary bladder, esophagus, liver and thyroid in DJM and DJF with physiques, which are applicable to most adult Japanese, agreed with those of RCP-AM and RCP-AF within 10%.

Journal Articles

Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex, 3; Neutron devices and computational and sample environments

Sakasai, Kaoru; Sato, Setsuo*; Seya, Tomohiro*; Nakamura, Tatsuya; To, Kentaro; Yamagishi, Hideshi*; Soyama, Kazuhiko; Yamazaki, Dai; Maruyama, Ryuji; Oku, Takayuki; et al.

Quantum Beam Science (Internet), 1(2), p.10_1 - 10_35, 2017/09

Neutron devices such as neutron detectors, optical devices including supermirror devices and $$^{3}$$He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.

JAEA Reports

Assessment of specific absorbed fractions for photons and electrons using average adult Japanese female phantom

Manabe, Kentaro; Sato, Kaoru; Takahashi, Fumiaki

JAEA-Data/Code 2016-013, 48 Pages, 2016/12

JAEA-Data-Code-2016-013.pdf:1.3MB
JAEA-Data-Code-2016-013-appendix(CD-ROM).zip:0.47MB

In the 2007 Recommendations of the International Commission on Radiological Protection (ICRP), an effective dose is defined as a sum of equivalent doses which are calculated by using male and female reference phantoms based on Caucasian physiological data and averaged over the sexes by tissue weighting factors. Specific absorbed fractions (SAFs), which are essential for internal dosimetry, depend on the body weight and organ masses of phantoms. Then, the dose coefficients, which are committed effective doses per unit intake of radionuclides, developed by ICRP on the basis of the 2007 Recommendations reflect the physical characteristics of Caucasians and are averaged over the sexes. Meanwhile, the physiques of adult Japanese are generally smaller than those of adult Caucasians, and organ masses are also different from each other. Knowledge of the influence of race differences on dose coefficients is important to apply the sex averaged dose coefficients of ICRP to the Japanese system of radiation protection. In this study, SAFs for 25 kinds of mono-energetic electrons and photons ranging from 10 keV to 10 MeV were calculated about the combinations of 67 source regions and 42 target organs using the average adult Japanese female phantom, JF-103, incorporated with a general purpose radiation transport code, MCNPX 2.6.0. The data of this report and the previously published data of JM-103 are applicable to evaluate sex-specific and sex-averaged dose coefficients reflecting the physical characteristics of the average adult Japanese for intakes of all radionuclides not to emit other than photons and electrons.

Journal Articles

Verification of the quantitative method to measure enrichment of uranium-235 in radioactive waste

Yokoyama, Kaoru; Sato, Katsunori*; Yamanaka, Takashi*; Ishimori, Yuu

Radioisotopes, 65(11), p.441 - 450, 2016/11

It is important for the processing manufacturers of the uranium fuels to determine the quantity of U-235 and the enrichment. This study shows that the U-235 content evaluated from measurement of 186 keV $$gamma$$ rays emitted from U-235 can be corrected by a shielding factor, Xgeometry which quantified uneven distribution of U-238. The Xgeometry is evaluated from the direct and the scattered $$gamma$$ rays from the 1001 keV emitted from the Pa-234m. The Xgeometry was originally introduced for U-238 measurements. Because U-235 coexists with U-238, the Xgeometry is also possible to apply to the U-235 measurements. The experimental study with simulated waste drums demonstrated that the quantification errors of the U-235 content and the enrichment are reduced considering the factor.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2014

Hama, Katsuhiro; Mikake, Shinichiro; Ishibashi, Masayuki; Sasao, Eiji; Kuwabara, Kazumichi; Ueno, Tetsuro; Onuki, Kenji*; Beppu, Shinji; Onoe, Hironori; Takeuchi, Ryuji; et al.

JAEA-Review 2015-024, 122 Pages, 2015/11

JAEA-Review-2015-024.pdf:80.64MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technical basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase III, as the Phase II was concluded for a moment with the completion of the excavation of horizontal tunnels at GL-500m level in February 2014. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2014.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2015

Hama, Katsuhiro; Takeuchi, Ryuji; Saegusa, Hiromitsu; Iwatsuki, Teruki; Sasao, Eiji; Mikake, Shinichiro; Ikeda, Koki; Sato, Toshinori; Osawa, Hideaki; Koide, Kaoru

JAEA-Review 2015-021, 27 Pages, 2015/10

JAEA-Review-2015-021.pdf:4.35MB

The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite rock) at Mizunami City in Gifu Prefecture, central Japan. This report summarizes the research and development activities planned for fiscal year 2015 based on the MIU Master Plan updated in 2015 and so on. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified the critical issues on the geoscientific research program: "Development of modelling technologies for mass transport", "Development of drift backfilling technologies" and "Development of technologies for reducing groundwater inflow", based on the latest results of the synthesizing R&D. Investigations on those critical issues will be performed at the MIU in fiscal year 2015.

JAEA Reports

Synthesized research report in the second mid-term research phase; Mizunami Underground Research Laboratory Project, Horonobe Underground Research Laboratory Project and Geo-stability Project

Hama, Katsuhiro; Mizuno, Takashi; Sasao, Eiji; Iwatsuki, Teruki; Saegusa, Hiromitsu; Sato, Toshinori; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Yokota, Hideharu; et al.

JAEA-Research 2015-007, 269 Pages, 2015/08

JAEA-Research-2015-007.pdf:68.65MB
JAEA-Research-2015-007(errata).pdf:0.07MB

We have synthesised the research results from Mizunami/Horonobe URLs and geo-stability projects in the second mid-term research phase. It could be used as technical bases for NUMO/Regulator in each decision point from sitting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High quality construction techniques and field investigation methods have been developed and implemented and these will be directly applicable to the National Disposal Program (along with general assessments of hazardous natural events and processes). It will be crucial to acquire technical knowledge on decisions of partial backfilling and final closure by actual field experiments in Mizunami/Horonobe URLs as main themes for the next phases.

243 (Records 1-20 displayed on this page)