Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kobayashi, Yoshinori*; Sato, Kiminori*; Yamawaki, Masato*; Michishio, Koji*; Oka, Toshitaka; Washio, Masakazu*
Radiation Physics and Chemistry, 202, p.110590_1 - 110590_6, 2023/01
Times Cited Count:0 Percentile:0.2(Chemistry, Physical)Because of their different charge states, positrons and positronium (Ps) behave quite differently in macromolecules. The behavior of positively charged positrons is strongly influenced by electrostatic interactions. In nonpolar macromolecules such as polyethylene, energetic positrons, if not incorporated into Ps, fall into a delocalized state. These positrons are sensitively trapped by polar groups, if any. On the other hand, charge-neutral Ps is localized in a free volume regardless of the macromolecule's chemical structure. In this study, we discuss the behavior and annihilation characteristics of positrons and Ps in various macromolecules, emphasizing their differences.
Kobayashi, Yoshinori*; Sato, Kiminori*; Yamawaki, Masato*; Michishio, Koji*; Oka, Toshitaka; Washio, Masakazu*
Applied Physics Express, 15(7), p.076001_1 - 076001_4, 2022/07
Times Cited Count:1 Percentile:59.23(Physics, Applied)We discuss the energy dissipation of short-lived -positronium (
-Ps) in polymers and silica glass. The
parameter characterizing the Doppler broadening of
-Ps annihilation is determined from the previously reported systematic data of positron annihilation age momentum correlation for various polymers and silica glass. A comparison of the
parameter with that expected for thermalized
-Ps trapped in a free volume reveals that
-Ps is not thermalized and possesses excess energy in fluorinated polymers and silica glass, indicating that it is difficult for Ps to lose energy in substances containing heavy elements such as fluorine and silicon.
Kiriyama, Hiromitsu; Mori, Michiaki; Suzuki, Masayuki*; Daito, Izuru*; Okada, Hajime; Ochi, Yoshihiro; Tanaka, Momoko; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; et al.
Reza Kenkyu, 42(6), p.441 - 447, 2014/06
We describe three specific high power laser systems that are being developed in our laboratory for many applications in high field science, nonlinear optics and material processing. We report on a femtosecond petawatt-class Ti:sapphire chirped-pulse amplification laser system that can produce a pulse energy of 20 J of 40 fs pulse duration, a picosecond high intensity Yb:YAG chirped-pulse amplification laser system that can generate a pulse energy of 100 mJ of 0.5 ps pulse duration, and a nanosecond high repetition rate Nd:YAG laser system that can provide an average power of 360 W with a pulse duration of 30 ns delivered at a 1 kHz repetition rate. We discuss the basic design aspects and present the results from our experimental investigations of these laser systems.
Sakaki, Hironao; Nishiuchi, Mamiko; Maeda, Shota; Sagisaka, Akito; Pirozhkov, A. S.; Pikuz, T.; Faenov, A.*; Ogura, Koichi; Fukami, Tomoyo; Matsukawa, Kenya*; et al.
Review of Scientific Instruments, 85(2), p.02A705_1 - 02A705_4, 2014/02
Times Cited Count:2 Percentile:11.99(Instruments & Instrumentation)High intensity laser-plasma interaction has attracted considerable interest for a number of years. The laser-plasma interaction is accompanied by generation of various charged particle beams. Results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction, are proposed to use for optimization of the laser-plasma ion generation. The proposed method is demonstrated by the laser irradiation with the intensity os 110
W/cm
on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. Heavy-ion signal is registered with the CR39 track detector simultaneously. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System (PHITS). The results obtained provide useful approach for analyzing the various laser based ion beams.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
AIP Conference Proceedings 1465, p.53 - 57, 2012/07
Times Cited Count:0 Percentile:0.13We have reported hundred mJ level, femtosecond pulse duration with the high temporal contrast in an OPCPA/Yb:YAG ceramic thin disk laser system at 10 Hz repetition rate. At an input laser pulse energy of 3.8 mJ from the OPCPA preamplifer the output energy of 130 mJ with spectral bandwidth of 2.5 nm has been obtained from multipass Yb:YAG ceramic thin disk amplifier, and the optical efficiency from LD energy to amplified laser pulse is 9.6%. The recompressed laser pulse duration was measured to be 450 fs. Because the compressor efficiency exceeds 73% the compressed pulse energy can potentially be as high as 95 mJ. The contrast level of this laser pulse was measured to be less than 7.210
at -150 ps. This novel laser system after further amplification using additional amplifiers can be useful for the laser-driven proton acceleration in future.
Kiriyama, Hiromitsu; Suzuki, Masayuki*; Daito, Izuru; Okada, Hajime; Ochi, Yoshihiro; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
Reza Kenkyu, 40(2), p.143 - 145, 2012/02
We demonstrate a compact, high-spatiotemporal-quality, high-intensity diode-pumped Yb:YAG thin-disk chirped-pulse amplification (CPA) laser system that incorporates a nonlinear preamplifier based on optical parametric chirped-pulse amplification (OPCPA). The stretched pulses are amplified in the OPCPA preamplifier and the following Yb:YAG main amplifier to 100 mJ at 10 Hz. The broadband amplified beam quality of 1.1 (horizontal direction) and 1.4 (vertical direction) times diffraction limited and pulse compression down to 470 fs with contrast of better than 10
have been achieved successfully.
Suzuki, Masayuki*; Kiriyama, Hiromitsu; Daito, Izuru; Ochi, Yoshihiro; Okada, Hajime; Sato, Masatoshi*; Tamaoki, Yoshinori*; Yoshii, Takehiro*; Maeda, Junya*; Matsuoka, Shinichi*; et al.
Applied Physics B, 105(2), p.181 - 184, 2011/11
Times Cited Count:5 Percentile:29.56(Optics)We have demonstrated an OPCPA/Yb:YAG ceramic thin disk hybrid laser system having hundred mJ level pulse energy sub-picosecond pulse duration with high temporal contrast. At an input energy of 3.8 mJ from an OPCPA preamplifier an output energy of 130 mJ was obtained from Yb:YAG ceramic thin disk amplifier. A recompressed pulse duration of 450 fs with a contrast level of less than 7.210
was obtained. The contrast level is the highest value achieved in Yb:YAG chirped pulse amplification (CPA) laser system with hundred mJ level.
Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Maeda, Takuya*; Sakaki, Hironao; Hori, Toshihiko*; Ogura, Koichi; Nishiuchi, Mamiko; Teshima, Teruki*; Nishimura, Hiroaki*; et al.
Japanese Journal of Applied Physics, 50(10), p.106401_1 - 106401_7, 2011/10
Times Cited Count:8 Percentile:35.9(Physics, Applied)Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.
Materials Science Forum, 607, p.248 - 250, 2009/00
So far no standard procedure for the positron annihilation lifetime (PAL) technique has been established. A lack of the standards has led to difficulty in ensuring the equivalency and reliability of data from different laboratories. As a first, we conducted an interlaboratory comparison of PAL measurements for metal, polymer and silica glass with agreed procedures for data recording and analysis. The PAL data recorded at different laboratories were analyzed with a single lifetime component for the metal sample and with three components for the others, respectively. Based on the results of the reported positron and ortho-positronium lifetimes, the possible sources of the uncertainties in the PAL measurements are discussed. To reduce the effect of scattered rays, a lead shield was placed between the detectors. The uncertainty was significantly decreased, signifying that placing lead shields between the detectors effectively reduced the false signals due to the scattered
rays.
Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.
Journal of Applied Physics, 104(2), p.026102_1 - 026102_3, 2008/07
Times Cited Count:44 Percentile:82.59(Physics, Applied)Interlaboratory comparison of positron annihilation lifetime measurements using synthetic fused silica and polycarbonate was conducted with the participation of 12 laboratories. By regulating procedures for the measurement and data analysis the uncertainties of the positron lifetimes obtained at different laboratories were significantly reduced in comparison with those reported in the past.
Terasaki, Hidenori*; Kato, Takumi*; Urakawa, Satoru*; Funakoshi, Kenichi*; Sato, Kiminori*; Suzuki, Akio*; Okada, Taku
Geophysical Research Letters, 29(8), p.68_1 - 68_3, 2002/05
The in situ viscosity measurements of the pure molten Fe under high pressures were made by falling sphere X-ray radiography method. Viscosity coefficients at about 2000 K were 15-24 mPa s at 2.7-5.0 GPa, and 4-9 mPa s at 5.0-7.0 GPa. Drastic decrease was found at around 5 GPa, at which stable solid phase below the melting temperatures change from delta (bcc) to gamma (fcc) phases. The observation indicates the possibility that the structural change in the molten Fe occurs in a narrow pressure interval (1 GPa) at the similar condition with the phase transformation in the solid.
Kobayashi, Yoshinori*; Ito, Kenji*; Oka, Toshitaka*; Sakaki, Koji*; Shirai, Yasuharu*; Honda, Yoshihide*; Shimazu, Akira*; Fujinami, Masanori*; Hirade, Tetsuya; Saito, Haruo*; et al.
no journal, ,
For making a standard sample of positron annihilation measurement, quartz glass and polycarbonate were measured with 12 apparatus at AIST, Chiba Univ., Tokyo Univ., Tsukuba Univ., Touhoku Univ., Tokyo Gakugei Univ. JAEA, Nitto Denko, and Toray Research Center. By regulating procedure for the measurement and data analysis the uncertainties of the positron annihilation lifetime obtained at different laboratories were significantly reduced.
Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.
no journal, ,
So far no standard procedure for the positron annihilation lifetime (PAL) technique has been established. A lack of the standards has led to difficulty in ensuring equivalency and reliability of data from different laboratories. Recently, as a first step toward the standardization of the PAL technique, we conducted an interlaboratory comparison of PAL measurements for fused silica, polycarbonate and metal with agreed procedures for data recording and analysis. Based on the results of the reported lifetimes, possible sources of the uncertainties in the PAL measurements is probably caused by the backscattered -rays by other detectors. We succeeded to show that inserting shields between detectors can reduce the uncertainty.
Ito, Kenji*; Oka, Toshitaka*; Kobayashi, Yoshinori*; Shirai, Yasuharu*; Wada, Kenichiro*; Matsumoto, Masataka*; Fujinami, Masanori*; Hirade, Tetsuya; Honda, Yoshihide*; Hosomi, Hiroyuki*; et al.
no journal, ,
An interlaboratory comparison for positron annihilation lifetime measurements for pure nickel, polycarbonate (PC) and fused silica was performed. Based on the reported data of positron (for nickel) and positronium (for PC and fused silica) components, the uncertainties in the PAL measurements were estimated and their possible source was discussed.
Yogo, Akifumi; Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Sato, Katsutoshi; Nishikino, Masaharu; Maeda, Takuya; Mori, Michiaki; Ogura, Koichi; Orimo, Satoshi; et al.
no journal, ,
no abstracts in English
Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Maeda, Takuya; Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Mori, Michiaki; Ogura, Koichi; Orimo, Satoshi; et al.
no journal, ,
no abstracts in English
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Nakai, Yoshiki*; Daido, Hiroyuki; Bolton, P.; Sugiyama, Akira; Kondo, Kiminori; Kawanishi, Shunichi; et al.
no journal, ,
At our Institute we are developing a compact ion accelerator for cancer therapy using a laser-driven plasma point source of ions. The laser system was consisted of an oscillator, offner stretcher, optical parametric amplifier (OPCPA), LD pumped Yb:YAG amplifier, and compressor. In OPCPA the stretched laser pulse after the pulse stretcher was amplified to 5 mJ with only a 0.2 mJ input. After amplification in the OPCPA laser pulse was further amplified by an Yb:YAG (5 at%) thin disk module which was pumped by the Q-CW LD. The maximum output energy was about 120 mJ in a multi-pass scheme (20 pass) at 10 Hz. The compressed pulse duration is about 300 fs, and the contrast level before the main pulse is measured as 10 at -150 ps. We have developed that new high intensity, high contrast femtosecond OPCPA/LD-pumped Yb:YAG hybrid laser system. This novel system might represent the driver in integrated, laser-driven ion accelerator systems.
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Sato, Masatoshi*; Yoshii, Takehiro*; Tamaoki, Yoshinori*; Matsuoka, Shinichi*; Kan, Hirofumi*; Bolton, P.; et al.
no journal, ,
no abstracts in English
Suzuki, Masayuki; Kiriyama, Hiromitsu; Daito, Izuru; Okada, Hajime; Bolton, P.; Sugiyama, Akira; Kondo, Kiminori; Kawanishi, Shunichi*; Sato, Masatoshi*; Tamaoki, Yoshinori*; et al.
no journal, ,
At our Institute we are developing a compact ion accelerator for cancer therapy using a laser-driven plasma point source of ions. The laser system was consisted of an oscillator, Offner stretcher, optical parametric amplifier (OPCPA), LD pumped Yb:YAG amplifier, and compressor. In OPCPA the stretched laser pulse after the pulse stretcher was amplified to 3.8 mJ with only a 12.8 nJ input. After amplification in the OPCPA laser pulse was further amplified by an Yb:YAG thin disk module which was pumped by the Q-CW LD. The maximum output energy was about 80 mJ in a multi-pass scheme (20 pass) at 10 Hz. The compressed pulse duration is about 520 fs, and the contrast level before the main pulse is measured as 10 at -150 ps. We have developed that new high intensity, high contrast femtosecond OPCPA/LD-pumped Yb:YAG hybrid laser system. This novel system might represent the driver in integrated, laser-driven ion accelerator systems.
Kiriyama, Hiromitsu; Mori, Michiaki; Shimomura, Takuya; Nakai, Yoshiki*; Tanoue, Manabu*; Sasao, Hajime*; Kondo, Shuji; Kanazawa, Shuhei; Ochi, Yoshihiro; Tanaka, Momoko; et al.
no journal, ,
We report on a femtosecond high-intensity OPCPA/Ti:sapphire hybrid laser system that produces more than 30 J broadband output energy, indicating the potential for achieving petawatt-class peak powers. High temporal-contrast of 10 to 10
has been obtained with a near-perfect flat-topped spatial-profile of filling factor
80%. We also present a compact, high-intensity OPCPA/Yb:YAG hybrid laser system that generates
100 mJ output energy with a temporal contrast of better than 10
and good spatial beam quality.