Refine your search:     
Report No.
Search Results: Records 1-20 displayed on this page of 301

Presentation/Publication Type

Initialising ...


Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...


Initialising ...


Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fully chelating N$$_{3}$$O$$_{2}$$-pentadentate planar ligands designed for the strongest and selective capture of uranium from seawater

Mizumachi, Takumi*; Sato, Minami*; Kaneko, Masashi; Takeyama, Tomoyuki*; Tsushima, Satoru*; Takao, Koichiro*

Inorganic Chemistry, 61(16), p.6175 - 6181, 2022/04

Based on unique 5-fold equatorial coordination of UO$$_{2}$$$$^{2+}$$, water-compatible pentadentate planar ligands, H$$_{2}$$saldian and its derivatives, were designed as strong and selective capture of UO$$_{2}$$$$^{2+}$$ in seawater. In the simulated seawater condition (0.5 M NaCl + 2.3 mM HCO$$_{3}$$$$^{-}$$/CO$$_{3}$$$$^{2-}$$, pH 8), saldian$$^{2-}$$ shows the strongest complexation with UO$$_{2}$$$$^{2+}$$ to form UO$$_{2}$$(saldian) (log$$beta$$$$_{11}$$ = 28.05 $$pm$$ 0.07), which is more than 10 order of magnitude greater than amidoxime-based or -inspired ligand systems most commonly employed for U capture from seawater. Good selectivity for UO$$_{2}$$$$^{2+}$$ from other metal ions coexisting in seawater was also demonstrated.

JAEA Reports

Improvement of the Simplified Decommissioning Cost Estimation Code for Nuclear Facilities (DECOST)

Takahashi, Nobuo; Kubota, Shintaro; Takiya, Hiroaki; Sakaba, Ryosuke*; Sato, Koichi; Shichi, Ryo

JAEA-Testing 2021-002, 106 Pages, 2022/01


The Japan Atomic Energy Agency has various nuclear facilities such as reactor facilities and reprocessing facilities. Some aged facilities will be decommissioned after their original functions ended, and it is necessary to evaluate their decommissioning cost to formulate the initial decommissioning plans and the final decommissioning plans. We have developed an evaluation method called DECOST that can efficiently calculate the decommissioning cost in a short time based on factors such as features and similarity of the facilities and dismantling methods. The decommissioning of nuclear facilities has been implemented and new achievements and findings have been reported since the development of DECOST. These findings were reflected in DECOST. In consideration of the needs of DECOST users, DECOST has been improved so that the cost of dismantling the facility can be divided into the cost of releasing the controlled area and the cost of dismantling the facility building after the release of the controlled area. This report shows the improvement of DECOST, the concept of resetting the evaluation coefficient used in the cost evaluation formula, and the validity of the evaluation coefficient after resetting. In addition, the evaluation procedure of the improved DECOST is described, since the evaluation items and evaluation contents were partially changed due to the improvement.

Journal Articles

Design for detecting recycling muon after muon-catalyzed fusion reaction in solid hydrogen isotope target

Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09

A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 $$mu$$s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion ($$mu$$CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after $$mu$$CF reaction.

Journal Articles

Time evolution calculation of muon catalysed fusion; Emission of recycling muons from a two-layer hydrogen film

Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.

Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08

A muon ($$mu$$) having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by $$mu$$ and form a muonic hydrogen molecular ion, dt$$mu$$. Due to the short inter-nuclear distance of dt$$mu$$, the nuclear fusion, d +t$$rightarrow alpha$$ + n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion ($$mu$$CF). Recently, the interest on $$mu$$CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of $$mu$$CF in a two-layered hydrogen isotope target.

Journal Articles

Rabi-oscillation spectroscopy of the hyperfine structure of muonium atoms

Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.

Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08

 Times Cited Count:0 Percentile:0.01(Optics)

Journal Articles

Behavior of tritium release from a stainless vessel of the mercury target as a spallation neutron source

Kasugai, Yoshimi; Sato, Koichi; Takahashi, Kazutoshi*; Miyamoto, Yukihiro; Kai, Tetsuya; Harada, Masahide; Haga, Katsuhiro; Takada, Hiroshi

JPS Conference Proceedings (Internet), 33, p.011144_1 - 011144_6, 2021/03

A spallation neutron source with a mercury target has been in operation at the Materials and Life Science Experimental Facility of J-PARC since 2008. The target vessel made of stainless steel is required to be exchanged periodically due to radiation damage etc. In this presentation, tritium gas release observed in the first series of exchange work in 2011 and the analytical results will be shown.

Journal Articles

Two-step-pressurization method in pulsed electric current sintering of MoO$$_{3}$$ for production of $$^{99m}$$Tc radioactive isotope

Suematsu, Hisayuki*; Sato, Soma*; Nakayama, Tadachika*; Suzuki, Tatsuya*; Niihara, Koichi*; Nanko, Makoto*; Tsuchiya, Kunihiko

Journal of Asian Ceramic Societies (Internet), 8(4), p.1154 - 1161, 2020/12

 Times Cited Count:0 Percentile:0.01(Materials Science, Ceramics)

Pulsed electric current sintering of molybdenum trioxide (MoO$$_{3}$$) was carried out by one- and two-step pressuring methods for fabrication of irradiation target using production of $$^{99}$$Mo and $$^{rm 99m}$$Tc nuclear medicine. At 550$$^{circ}$$C by the two-step pressurizing method, a relative density of 93.1% was obtained while, by the one-step pressurization method, the relative density was 76.9%. Direct sample temperature measurements were conducted by inserting a thermocouple in a punch. By the two-step pressurizing method, the sample temperature was higher than that by the one-step pressurizing method even almost the same die temperature. From voltage and current waveforms, it was thought that the conductivity of the sample increased by the two-step pressurizing method to increase the sample temperature and the relative density. The two-step pressurization method enables us to prepare dense targets at a low temperature from recycled and coarse-grained $$^{98}$$Mo enriched MoO$$_{3}$$ powder.

Journal Articles

Measurement of the angular distribution of $$gamma$$-rays after neutron capture by $$^{139}$$La for a T-violation search

Okudaira, Takuya; Shimizu, Hirohiko*; Kitaguchi, Masaaki*; Hirota, Katsuya*; Haddock, C. C.*; Ito, Ikuya*; Yamamoto, Tomoki*; Endo, Shunsuke*; Ishizaki, Kohei*; Sato, Takumi*; et al.

EPJ Web of Conferences, 219, p.09001_1 - 09001_6, 2019/12

Parity violating effects enhanced by up to 10$$^6$$ times have been observed in several neutron induced compound nuclei. There is a theoretical prediction that time reversal (T) violating effects can also be enhanced in these nuclei implying that T-violation can be searched for by making very sensitive measurements. However, the enhancement factor has not yet been measured in all nuclei. The angular distribution of the (n,$$gamma$$) reaction was measured with $$^{139}$$La by using a germanium detector assembly at J-PARC, and the enhancement factor was obtained. From the result, the measurement time to achieve the most sensitive T-violation search was estimated as 1.4 days, and a 40% polarized $$^{139}$$La target and a 70% polarized $$^3$$He spin filter whose thickness is 70 atm$$cdot$$cm are needed. Therefore high quality $$^3$$He spin filter is developed in JAEA. The measurement result of the (n,$$gamma$$) reaction at J-PARC and the development status of the $$^3$$He spin filter will be presented.

Journal Articles

Upgrade of the 3-MeV linac for testing of accelerator components at J-PARC

Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.

Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12

 Times Cited Count:0 Percentile:0.07

We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Technological development of the particle size adjustment of dry recovered powder

Segawa, Tomomi; Yamamoto, Kazuya; Makino, Takayoshi; Iso, Hidetoshi; Kawaguchi, Koichi; Ishii, Katsunori; Sato, Hisato; Fukasawa, Tomonori*; Fukui, Kunihiro*

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.738 - 745, 2019/09

In the MOX fuel fabrication process, the dry grinding technology of mixed oxide pellets have been developed for the effective use of nuclear fuel materials. To develop a technology to control the particle size of dry recovered powder, the performance of the buhrstone mill and the collision plate type jet mill were studied using a simulated powder of particle size distribution about 500 $$mu$$m. We found that the particle size can be controlled at the range of about 250 $$mu$$m or less by both by adjusting the clearance between the grinding wheels of the buhrstone mill, and the clearance and elevation angle of the clarification zone of the the collision plate type jet mill. And furthermore, the collision plate type jet mill is considered to be suitable for particle size control because the operating parameters of the classifier can be finely adjusted.

Journal Articles

Enhancement of element production by incomplete fusion reaction with weakly bound deuteron

Wang, H.*; Otsu, Hideaki*; Chiga, Nobuyuki*; Kawase, Shoichiro*; Takeuchi, Satoshi*; Sumikama, Toshiyuki*; Koyama, Shumpei*; Sakurai, Hiroyoshi*; Watanabe, Yukinobu*; Nakayama, Shinsuke; et al.

Communications Physics (Internet), 2(1), p.78_1 - 78_6, 2019/07

 Times Cited Count:5 Percentile:62.37(Physics, Multidisciplinary)

Searching for effective pathways for the production of proton- and neutron-rich isotopes through an optimal combination of reaction mechanism and energy is one of the main driving forces behind experimental and theoretical nuclear reaction studies as well as for practical applications in nuclear transmutation of radioactive waste. We report on a study on incomplete fusion induced by deuteron, which contains one proton and one neutron with a weak binding energy and is easily broken up. This reaction study was achieved by measuring directly the cross sections for both proton and deuteron for $$^{107}$$Pd at 50 MeV/u via inverse kinematics technique. The results provide direct experimental evidence for the onset of a cross-section enhancement at high energy, indicating the potential of incomplete fusion induced by loosely-bound nuclei for creating proton-rich isotopes and nuclear transmutation of radioactive waste.

Journal Articles

Current-induced modulation of coercive field in the ferromagnetic oxide SrRuO$$_{3}$$

Yamanouchi, Michihiko*; Oyamada, Tatsuro*; Sato, Koichi*; Ota, Hiromichi*; Ieda, Junichi

IEEE Transactions on Magnetics, 55(7), p.1400604_1 - 1400604_4, 2019/07

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

Journal Articles

Discussion on translational research of drug product for targeted alpha therapy, 2

Yano, Tsuneo*; Hasegawa, Koki*; Sato, Tatsuhiko; Hachisuka, Akiko*; Fukase, Koichi*; Hirabayashi, Yoko*

Iyakuhin Iryo Kiki Regyuratori Saiensu, 50(3), p.122 - 134, 2019/03

This report provides an overview of alpha-particle-emitting radiopharmaceuticals applied by micro-dosimetry.

JAEA Reports

The User manual of the simplified decommissioning cost estimation code for nuclear facilities "DECOST"

Takahashi, Nobuo; Suekane, Yurika; Sakaba, Ryosuke*; Kurosawa, Takuya*; Sato, Koichi; Meguro, Yoshihiro

JAEA-Testing 2018-002, 45 Pages, 2018/07


The Japan Atomic Energy Agency has many nuclear facilities such as research reactors, nuclear fuel facilities and research facilities. Although these facilities will be decommissioned due to the termination of the purpose of use of the facility and aging, it is necessary to evaluate the decommissioning cost of these facilities prior to the decommissioning. We have developed an evaluation method called DECOST code that can efficiently calculate the decommissioning cost in a short time based on factors such as features, similarity, and dismantling methods. This report is as a manual of the DECOST code prepared for improving convenience. Here, the evaluation formulae used for DECOST are presented and the method of using them is explained for each kind of nuclear facilities to be evaluated. In addition, the preparation method of facility information and dismantled waste amount that are need for evaluation is also shown.

Journal Articles

Nuclear moments of the low-lying isomeric $$1^+$$ state of $$^{34}$$Al; Investigation on the neutron $$1p1h$$ excitation across $$N=20$$ in the island of inversion

Xu, Z. Y.*; Heylen, H.*; Asahi, Koichiro*; Boulay, F.*; Daugas, J. M.*; de Groote, R. P.*; Gins, W.*; Kamalou, O.*; Koszor$'u$s, $'A$.*; Lykiardopoupou, M.*; et al.

Physics Letters B, 782, p.619 - 626, 2018/07


 Times Cited Count:5 Percentile:56.63(Astronomy & Astrophysics)

no abstracts in English

Journal Articles

Design of HTTR-GT/H$$_{2}$$ test plant

Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu*; Horii, Shoichi*; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.

Nuclear Engineering and Design, 329, p.223 - 233, 2018/04

 Times Cited Count:10 Percentile:87.34(Nuclear Science & Technology)

The pre-licensing design of an HTGR cogeneration test plant to be coupled to JAEA's existing test reactor HTTR is presented. The plant is designed to demonstrate the system of JAEA commercial plant design GTHTR300C. With construction planned to be completed around 2025, the test plant is expected to be the first-of-a-kind nuclear system operating on two of the advanced energy conversion systems attractive for the HTGR closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.

Journal Articles

Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC

Terada, Kentaro*; Sato, Akira*; Ninomiya, Kazuhiko*; Kawashima, Yoshitaka*; Shimomura, Koichiro*; Yoshida, Go*; Kawai, Yosuke*; Osawa, Takahito; Tachibana, Shogo*

Scientific Reports (Internet), 7(1), p.15478_1 - 15478_6, 2017/11


 Times Cited Count:7 Percentile:46.18(Multidisciplinary Sciences)

Electron- or X-ray-induced characteristic X-ray analysis has been widely used to determine chemical compositions of materials in vast research fields. In recent years, analysis of characteristic X-rays from muonic atoms, in which a muon is captured, has attracted attention because both a muon beam and a muon-induced characteristic X-ray have high transmission abilities. Here we report the first non-destructive elemental analysis of a carbonaceous chondrite using one of the world-leading intense direct current muon beam source (MuSIC; MUon Science Innovative Channel). We successfully detected characteristic muonic X-rays of Mg, Si, Fe, O, S and C from Jbilet Winselwan CM chondrite, of which carbon content is about 2 wt percent, and the obtained elemental abundance pattern was consistent with that of CM chondrites.

Journal Articles

A 3 MeV linac for development of accelerator components at J-PARC

Kondo, Yasuhiro; Asano, Hiroyuki*; Chishiro, Etsuji; Hirano, Koichiro; Ishiyama, Tatsuya; Ito, Takashi; Kawane, Yusuke; Kikuzawa, Nobuhiro; Meigo, Shinichiro; Miura, Akihiko; et al.

Proceedings of 28th International Linear Accelerator Conference (LINAC 2016) (Internet), p.298 - 300, 2017/05

We have constructed a linac for development of various accelerator components at J-PARC. The ion source is same as the J-PARC linac's, and the RFQ is a used one in the J-PARC linac. The beam energy is 3 MeV and nominal beam current is 30 mA. The accelerator has been already commissioned, and the first development program, laser-charge-exchange experiment for the transmutation experimental facility, has been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Development of beam scrapers using a 3-Mev linac at J-PARC

Hirano, Koichiro; Asano, Hiroyuki; Ishiyama, Tatsuya; Ito, Takashi; Okoshi, Kiyonori; Oguri, Hidetomo; Kondo, Yasuhiro; Kawane, Yusuke; Kikuzawa, Nobuhiro; Sato, Yoshikatsu; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.310 - 313, 2016/11

We have used a beam scraper with the incident angle of 65deg to reduce the beam power deposition density in the MEBT between a 324 MHz RFQ and a 50-MeV DTL of the J-PARC linac. The 65$$^{circ}$$ scraper was irradiated by the H$$^{-}$$ beam up to particle number of 1.47E22. We observed a lot of surface projections with several hundred micrometers high in the beam irradiation damage on the scraper by using the laser microscope. In order to study the limits of scrapers, we constructed a new 3 MeV linac at J-PARC. We will conduct the scraper irradiation test at the end of this year.

Journal Articles

HTTR-GT/H$$_{2}$$ test plant; System design

Yan, X.; Sato, Hiroyuki; Sumita, Junya; Nomoto, Yasunobu; Horii, Shoichi; Imai, Yoshiyuki; Kasahara, Seiji; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; et al.

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.827 - 836, 2016/11

Pre-licensing basic design for a cogenerating HTGR test plant system is presented. The plant to be coupled to existing 30 MWt 950$$^{circ}$$C test reactor HTTR is intended as a system technology demonstrator for GTHTR300C plant design. More specifically the test plant of HTTR-GT/H$$_{2}$$ aims to (1)demonstrate the licensability of the GTHTR300C for electricity production by gas turbine and hydrogen cogeneration by thermochemical process and (2) confirm the operation control and safety of such cogeneration system. With construction and operation completion by 2025, the test plant is expected to be the first of a kind HTGR-powered cogeneration plant operating on the two advanced energy conversion systems of closed cycle helium gas turbine for power generation and thermochemical iodine-sulfur water-splitting process for hydrogen production.

301 (Records 1-20 displayed on this page)