Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Site occupancy of interstitial deuterium atoms in face-centred cubic iron

Machida, Akihiko; Saito, Hiroyuki; Sugimoto, Hidehiko*; Hattori, Takanori; Sano, Asami; Endo, Naruki*; Katayama, Yoshinori; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.

Nature Communications (Internet), 5, p.5063_1 - 5063_6, 2014/09

 Times Cited Count:55 Percentile:86.02(Multidisciplinary Sciences)

Iron hydride FeH$$_x$$, is thermodynamically stable only at high hydrogen pressure of several GPa. To investigate the hydrogenation process and hydrogen state in iron hydride, it is necessary to carry out the in-situ measurement under high pressure and high temperature. In this study, we performed the in-situ neutron diffraction measurement of Fe-D system using the high pressure neutron diffractometer PLANET in the MLF, J-PARC, and determined the deuterium occupying sites and occupancies in fcc-FeD$$_x$$. We found the minor occupation of tetrahedral sites under high pressure and high temperature. We considered the mechanism of the minor occupation based on the Quantum-mechanical calculation.

Journal Articles

Unusual sevenfold coordination of Ru in complex hydride Na$$_{3}$$RuH$$_{7}$$; Prospect for formation of [FeH$$_{7}$$]$$^{3-}$$ anion

Takagi, Shigeyuki*; Ikeshoji, Tamio*; Matsuo, Motoaki*; Sato, Toyoto*; Saito, Hiroyuki; Aoki, Katsutoshi; Orimo, Shinichi*

Applied Physics Letters, 103(11), p.113903_1 - 113903_4, 2013/09

 Times Cited Count:9 Percentile:37.98(Physics, Applied)

Journal Articles

Formation process of perovskite-type hydride LiNiH$$_{3}$$; ${it In situ}$ synchrotron radiation X-ray diffraction study

Sato, Ryutaro*; Saito, Hiroyuki; Endo, Naruki; Takagi, Shigeyuki*; Matsuo, Motoaki*; Aoki, Katsutoshi; Orimo, Shinichi*

Applied Physics Letters, 102(9), p.091901_1 - 091901_4, 2013/03

 Times Cited Count:29 Percentile:73.44(Physics, Applied)

Journal Articles

Density-functional study of perovskite-type hydride LiNiH$$_{3}$$ and its synthesis; Mechanism for formation of metallic perovskite

Takagi, Shigeyuki*; Saito, Hiroyuki; Endo, Naruki; Sato, Ryutaro*; Ikeshoji, Tamio*; Matsuo, Motoaki*; Miwa, Kazutoshi*; Aoki, Katsutoshi; Orimo, Shinichi*

Physical Review B, 87(12), p.125134_1 - 125134_6, 2013/03

 Times Cited Count:14 Percentile:53.53(Materials Science, Multidisciplinary)

Journal Articles

Formation of an Fe-H complex anion in YFe$$_{2}$$; Adjustment of imbalanced charge by additional Li as an electron donor

Matsuo, Motoaki*; Saito, Hiroyuki; Machida, Akihiko; Sato, Ryutaro*; Takagi, Shigeyuki*; Miwa, Kazutoshi*; Watanuki, Tetsu; Katayama, Yoshinori; Aoki, Katsutoshi; Orimo, Shinichi*

RSC Advances (Internet), 3(4), p.1013 - 1016, 2013/01

 Times Cited Count:19 Percentile:53.62(Chemistry, Multidisciplinary)

Journal Articles

Trial operation of the advanced volume reduction facilities for LLW at JAEA

Nakashio, Nobuyuki; Higuchi, Hidekazu; Momma, Toshiyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Journal of Nuclear Science and Technology, 44(3), p.441 - 447, 2007/03

 Times Cited Count:9 Percentile:54.87(Nuclear Science & Technology)

The Japan Atomic Energy Agency (JAEA) constructed the Advanced Volume Reduction Facilities (AVRF), in which volume reduction techniques are applied and achieved high volume reduction ratio, homogenization and stabilization by means of melting or super compaction processes for low level solid wastes. It will be able to produce waste packages for final disposal and to reduce the volume of stored wastes by operating the AVRF. The AVRF consist of the Waste Size Reduction and Storage Facilities (WSRSF) and the Waste Volume Reduction Facilities (WVRF); the former have cutting installations for large size wastes and the latter have melting units and a super compactor. Cutting installations in the WSRSF have been operating since July 1999. Radioactive wastes treated so far amount to 750 m$$^{3}$$ and the volume reduction ratio is from 1.7 to 3.7. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation of the pretreatment system in the WVRF with radioactive wastes has partly started in FY2005.

Journal Articles

System of the advanced volume reduction facilities for LLW at JAERI

Higuchi, Hidekazu; Momma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The JAERI constructed the Advanced Volume Reduction Facilities(AVRF). The AVRF consists of the Waste Size Reduction and Storage Facilities(WSRSF) and the Waste Volume Reduction Facilities(WVRF). By operating the AVRF, it will be able to produce waste packages for final disposal and to reduce the amount of the low level solid wastes. Cutting installations for large wastes such as tanks in the WSRSF have been operating since June 1999. The wastes treated so far amount to 600 m$$^{3}$$ and the volume reduction ratio is around 1/3. The waste volume reduction is carried out by a high-compaction process or melting processes in the WVRF. The metal wastes from research reactors are treated by the high-compaction process. The other wastes are treated by the melting processes that enable to estimate radioactivity levels easily by homogenization and get chemical and physical stability. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005.

Journal Articles

Advanced volume reduction program for LLW at JAERI

Higuchi, Hidekazu; Sato, Motoaki; Hirabayashi, Takakuni*; Tanaka, Mitsugu

Proceedings of 2nd International Conference on Safewaste 2000, Vol.1, p.314 - 322, 2000/00

no abstracts in English

Journal Articles

Completion of waste size reduction and storage facilities

Sato, Motoaki

RANDEC Nyusu, (42), p.8 - 9, 1999/07

no abstracts in English

Oral presentation

Structural studies of iron deuteride by in-situ neutron diffraction measurements under high temperature and high pressure

Machida, Akihiko; Saito, Hiroyuki; Hattori, Takanori; Sano, Asami; Endo, Naruki; Watanuki, Tetsu; Katayama, Yoshinori; Aoki, Katsutoshi; Sato, Toyoto*; Matsuo, Motoaki*; et al.

no journal, , 

no abstracts in English

Oral presentation

In situ neutron diffraction measurement on deuterization process of iron at high pressure and high temperature

Machida, Akihiko; Saito, Hiroyuki; Hattori, Takanori; Sano, Asami; Endo, Naruki*; Watanuki, Tetsu; Katayama, Yoshinori; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.

no journal, , 

Iron hydride FeH$$_x$$, is thermodynamically stable only at high hydrogen pressure of several GPa. Three hydride phases, bcc-FeH$$_x$$ ($$x < 0.05$$), dhcp-FeH$$_x$$ ($$x sim 1$$), and fcc-FeH$$_x$$ ($$x = 0 - 1$$) were confirmed at 300-2000 K and 0-20 GPa. In situ neutron diffraction measurement on their deutrides have not been reported yet. A high pressure neutron diffractometor, PLANET, constructed at Materials and Life Science Experimental Facility at J-PARC, enables us to perform in situ neutoron diffraction measurements on deuterization process of metals at high pressure and high temperature. With PLANET, the deuteration process of iron was investigated at a pressure of about 7 GPa and temperatures up to about 1000 K. This in situ measurement was successfully made using a deuterization reaction cell developed for neutron diffraction measurement. We observed the bcc-fcc transition of pure iron around 800 K and successive deuterization of fcc-Fe around 870 K.

Oral presentation

${it In situ}$ neutron diffraction measurement on the deuterization process of Fe at high temperature and high pressure

Machida, Akihiko; Saito, Hiroyuki; Hattori, Takanori; Sano, Asami; Endo, Naruki; Watanuki, Tetsu; Katayama, Yoshinori; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.

no journal, , 

no abstracts in English

Oral presentation

Study of deuterization reaction process of iron at high pressure using in situ neutron diffraction measurement

Machida, Akihiko; Saito, Hiroyuki; Hattori, Takanori; Sano, Asami; Endo, Naruki; Watanuki, Tetsu; Katayama, Yoshinori; Iizuka, Riko*; Sato, Toyoto*; Matsuo, Motoaki*; et al.

no journal, , 

no abstracts in English

Oral presentation

Syntheses of complex hydrides under high pressure and high temperature using synchrotron X-ray diffraction measurement

Saito, Hiroyuki; Takagi, Shigeyuki*; Iijima, Yuki*; Sato, Toyoto*; Matsuo, Motoaki*; Aoki, Katsutoshi*; Orimo, Shinichi*

no journal, , 

no abstracts in English

14 (Records 1-14 displayed on this page)
  • 1