Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 414

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Impact of stellar superflares on planetary habitability

Yamashiki, Yosuke*; Maehara, Hiroyuki*; Airapetian, V.*; Notsu, Yuta*; Sato, Tatsuhiko; Notsu, Shota*; Kuroki, Ryusuke*; Murashima, Keiya*; Sato, Hiroaki*; Namekata, Kosuke*; et al.

Astrophysical Journal, 881(2), p.114_1 - 114_24, 2019/08

The impact of Stellar flares on extrasolar planetary systems has been discussed and argued, especially whether there is a potential impact on their life systems. Here, we propose a comprehensive evaluation system for stellar flares, focusing on Stellar Proton Events (SPE) on selected extrasolar planets with hypothetical atmospheres and oceans. This is done by cross-linking KIC flare-observed and flare-estimated stars by their start pots that are directly linked with the Monte Carlo simulation system PHITS through the exoplanetary database system ExoKyoto. The estimated dose at ground level for each planetary surface did not exceed the critical dose for complex animals.

Journal Articles

A Biologically based mathematical model for spontaneous and ionizing radiation cataractogenesis

Sakashita, Tetsuya*; Sato, Tatsuhiko; Hamada, Nobuyuki*

PLoS ONE (Internet), 14(8), p.e0221579_1 - e0221579_20, 2019/08

Cataracts have long been known, but a biologically based mathematical model is still unavailable for cataratogenesis. We here report for the first time an in silico model for cataractogenesis. First, a simplified cell proliferation model was developed for human lens growth based on stem and progenitor cell proliferation as well as epithelial-fiber cell differentiation. Then, a model for spontaneous cataractogenesis was developed to reproduce the human data on a relationship between age and cataract incidence. Finally, a model for radiation cataractogenesis was developed that can reproduce the human data on a relationship between dose and cataract onset at various ages, which was further applied to estimate cataract incidence following chronic lifetime exposure.

Journal Articles

Intensity modulated radiation fields induce protective effects and reduce importance of dose-rate effects

Matsuya, Yusuke; McMahon, S. J.*; Ghita, M.*; Yoshii, Yuji*; Sato, Tatsuhiko; Date, Hiroyuki*; Prise, K. M.*

Scientific Reports (Internet), 9(1), p.9483_1 - 9483_12, 2019/07

In radiotherapy, intensity modulated radiation fields and complex dose-delivery are used to prescribe doses to tumors. Here, we analyzed the impact of modulated field on radio-sensitivity and cell recovery during irradiation time. The dose was delivered to either 50% of the area of the flask containing cells (half-field) or 100% of the flask (uniform-field). We also modelled cell-killing considering dose-rate effects and intercellular signals. It is found that (i) in-field cell survival under half-field exposure is higher than uniform-field exposure even with the same dose; (ii) the importance of sub-lethal damage repair in normal human skin fibroblast cells under the half-field is reduced; (iii) the increase of cell survival under half-field is predominantly attributed to not rescue effects (increased repair) but protective effects (reduced initial DNA lesion yield). These findings provide new understanding of radio-sensitivity for hit and non-hit cells under non-uniform exposure.

Journal Articles

DNA damage induction during localized chronic exposure to an insoluble radioactive microparticle

Matsuya, Yusuke; Satou, Yukihiko; Hamada, Nobuyuki*; Date, Hiroyuki*; Ishikawa, Masayori*; Sato, Tatsuhiko

Scientific Reports (Internet), 9(1), p.10365_1 - 10365_9, 2019/07

Insoluble radioactive microparticles (so called Cs-bearing particles) have been assumed to adhere in the long term to trachea after aspirated into respiratory system, leading to heterogeneous dose distribution within healthy tissue around the particles. The biological effects posed by such a particle remain unclear. Here, we show cumulative DNA damage in cultured cells proximal and distal to the particle under localized chronic exposure in comparison with uniform exposure. We placed the particle-contained microcapillary onto a glass-base dish containing normal human lung cells in vitro, and observed a significant change in nuclear $$gamma$$-H2AX foci after 24 h or 48 h exposure to the particle. The dose calculation by a Monte Carlo simulation and the comparison with nuclear foci under uniform exposure suggested that the localized exposure to a Cs-bearing particle leads to not only signal-induced DNA damage to distal cells but also the reduction of DNA damage induction yield to proximal cells (protective effects). Considering the small organ dose, the conventional radiation risk assessment is adequate. This study is the first to quantify the spatial distribution of cumulative DNA lesions under heterogeneous exposure by insoluble Cs-bearing particles.

Journal Articles

Depth distributions of RBE-weighted dose and photon-isoeffective dose for boron neutron capture therapy

Sato, Tatsuhiko; Masunaga, Shinichiro*; Kumada, Hiroaki*; Hamada, Nobuyuki*

Radiation Protection Dosimetry, 183(1-2), p.247 - 250, 2019/05

As an application of Particle and Heavy Ion Transport code System PHITS, We have developed the stochastic microdosimetric kinetic (SMK) model for estimating the therapeutic effects of various kinds of radiation therapy. In this study, we improved the SMK model for estimating the therapeutic effect of boron neutron capture therapy, BNCT. The improved SMK model can consider not only the intra- and intercellular heterogeneity of B-10 distribution but also the dose rate effect. The accuracy of the model was well verified by comparisons made between calculated and measured surviving fractions of tumor cells, which we previously determined in vivo in mice with B-10 compounds exposed to reactor neutron beam. Details of the improved SMK model together with the verification results will be presented at the meeting.

Journal Articles

Estimation method of systematic uncertainties in Monte Carlo particle transport simulation based on analysis of variance

Hashimoto, Shintaro; Sato, Tatsuhiko

Journal of Nuclear Science and Technology, 56(4), p.345 - 354, 2019/04

 Percentile:100(Nuclear Science & Technology)

Particle transport simulations based on the Monte Carlo method have been applied to shielding calculations. Estimation of not only statistical uncertainty related to the number of trials but also systematic one induced by unclear physical quantities is required to confirm the reliability of calculated results. In this study, we applied a method based on analysis of variance to shielding calculations. We proposed random- and three-condition methods. The first one determines randomly the value of the unclear quantity, while the second one uses only three values: the default value, upper and lower limits. The systematic uncertainty can be estimated adequately by the random-condition method, though it needs the large computational cost. The three-condition method can provide almost the same estimate as the random-condition method when the effect of the variation is monotonic. We found criterion to confirm convergence of the systematic uncertainty as the number of trials increases.

Journal Articles

Dosimetric impact of a new computational voxel phantom series for the Japanese atomic bomb survivors; Children and adults

Griffin, K.*; Paulbeck, C.*; Bolch, W.*; Cullings, H.*; Egbert, S.*; Funamoto, Sachiyo*; Sato, Tatsuhiko; Endo, Akira; Hertel, N.*; Lee, C.*

Radiation Research, 191(4), p.369 - 379, 2019/04

 Percentile:100(Biology)

Due to computing limitations of the time, only three stylized phantoms were used in DS86 and DS02 to represent the entire Japanese population: an infant, child, and adult. Our study aimed to evaluate the dosimetric impact that should be expected from using an updated and age-expanded RERF phantom series with the survivor cohort. To this end, we developed a new series of hybrid phantoms, based on the Japanese population of 1945, which has greater anatomical realism and improved age resolution than those previously used by RERF. From the photon portion of the spectra, dose differences of up to nearly 25% are expected between the old and new series, while differences of up to nearly 70% are expected from the neutron portion. Overall, our new series of phantoms has shown to provide significant improvements to survivor organ dosimetry, especially to those survivors who were previously misrepresented in body size by their stylized phantom and to those who experienced a highly-directional irradiation field.

Journal Articles

Discussion on translational research of drug product for targeted alpha therapy, 2

Yano, Tsuneo*; Hasegawa, Koki*; Sato, Tatsuhiko; Hachisuka, Akiko*; Fukase, Koichi*; Hirabayashi, Yoko*

Iyakuhin Iryo Kiki Regyuratori Saiensu, 50(3), p.122 - 134, 2019/03

This report provides an overview of alpha-particle-emitting radiopharmaceuticals applied by micro-dosimetry.

Journal Articles

Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere; Extension of WASAVIES to earth orbit

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Miyoshi, Yoshizumi*; Ueno, Haruka*; Nagamatsu, Aiko*

Journal of Space Weather and Space Climate (Internet), 9, p.A9_1 - A9_11, 2019/03

Real-time estimation of astronaut doses during solar particle events (SPE) is one of the most challenging tasks in cosmic-ray dosimetry. We therefore develop a new computational method that can nowcast the solar energetic particle (SEP) as well as galactic cosmic-ray (GCR) fluxes on any Earth orbit during a large SPE associating with ground level enhancement. It is an extended version of WArning System for AVIation Exposure to Solar Energetic Particle, WASAVIES. The extended version, called WASAVIES-EO, can calculate the GCR and SEP fluxes outside a satellite based on its two-line element data. Moreover, organ dose and dose-equivalent rates of astronauts in the International Space Station (ISS) can be estimated using the system, considering its shielding effect. The accuracy of WASAVIES-EO was validated based on the dose rates measured in ISS, as well as based on high-energy proton fluxes observed by POES satellites.

Journal Articles

Transient ionization of the mesosphere during auroral breakup; Arase satellite and ground-based conjugate observations at Syowa Station

Kataoka, Ryuho*; Nishiyama, Takanori*; Tanaka, Yoshimasa*; Kadokura, Akira*; Uchida, Herbert Akihito*; Ebihara, Yusuke*; Ejiri, Mitsumu*; Tomikawa, Yoshihiro*; Tsutsumi, Masaki*; Sato, Kaoru*; et al.

Earth, Planets and Space (Internet), 71, p.9_1 - 9_10, 2019/01

 Percentile:100(Geosciences, Multidisciplinary)

Transient ionization of the mesosphere was detected at around 65 km altitude during the isolated auroral expansion occurred at 2221-2226 UT on June 30, 2017. A general-purpose Monte Carlo particle transport code PHITS suggested that significant ionization is possible in the middle atmosphere due to auroral X-rays from the auroral electrons of $$<$$10 keV.

Journal Articles

A New Standard DNA Damage (SDD) data format

Schuemann, J.*; McNamara, A. L.*; Warmenhoven, J. W.*; Henthorn, N. T.*; Kirkby, K.*; Merchant, M. J.*; Ingram, S.*; Paganetti, H.*; Held, K. D.*; Ramos-Mendez, J.*; et al.

Radiation Research, 191(1), p.76 - 93, 2019/01

We propose a new Standard DNA Damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modelling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.

Journal Articles

Estimation of the therapeutic effect of BNCT based on the dose distributions in cellular scale

Sato, Tatsuhiko

Isotope News, (760), p.2 - 5, 2018/12

Recently, we proposed a new model for estimating the biological effectiveness for Boron Neutron Capture Therapy (BNCT) based on the absorbed dose distributions in cellular scale. The model quantitatively highlighted the indispensable need to consider the synergetic effect and the dose dependence of the biological effectiveness in the estimate of the therapeutic effect of BNCT. This paper reviews the basic features of the model.

Journal Articles

Internal doses from radionuclides and their health effects following the Fukushima accident

Ishikawa, Tetsuo*; Matsumoto, Masaki*; Sato, Tatsuhiko; Yamaguchi, Ichiro*; Kai, Michiaki*

Journal of Radiological Protection, 38(4), p.1253 - 1268, 2018/12

 Times Cited Count:1 Percentile:38.14(Environmental Sciences)

The current knowledge on internal dose estimation and its health effect were reviewed in this paper. The goals were to discuss the uncertainty of current dose coefficients, to compare the effects of external and internal exposures, and to review recent epidemiological studies. Radionuclides focused on in this study were caesium-137 ($$^{137}$$Cs), caesium-134 ($$^{134}$$Cs), and iodine-131 ($$^{131}$$I), which primarily contributed to internal effective thyroid doses after the Fukushima Dai-ichi Nuclear Power Station accident. Current knowledge suggests that the risk of internal exposure could be generally the same as or less than that of external exposure, when they are compared at the same effective dose.

Journal Articles

Establishment of a novel detection system for measuring primary knock-on atoms

Tsai, P.-E.; Iwamoto, Yosuke; Hagiwara, Masayuki*; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Satoh, Daiki; Abe, Shinichiro; Ito, Masatoshi*; Watabe, Hiroshi*

Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2017) (Internet), 3 Pages, 2018/11

The energy spectra of primary knock-on atoms (PKAs) are essential for radiation damage assessment in design of accelerator facilities. However up to date the experimental data are still limited, due to the poor mass resolution and the high measurement threshold energies in the conventional setup of nuclear physics experiments using solid state detectors, which are typically above a few MeV/nucleon. In this study, a novel detection system consisting of two time detectors and one dE-E energy detector is proposed and being constructed to measure the PKA spectra. The system and detector design was based on Monte Carlo simulations by using the PHITS code. The PHITS simulations show that the system is able to distinguish the PKA isotopes above $$sim$$0.2-0.3 MeV/nucleon for A=20$$sim$$30 amu; the PKA mass identification thresholds decrease to $$<$$0.1 MeV/nucleon for PKAs lighter than 20 amu. The detection system will be tested in the summer of 2017, and the test results will be presented at the conference.

Journal Articles

Analysis of scintillation light intensity by microscopic radiation transport calculation and F$"{o}$rster quenching model

Ogawa, Tatsuhiko; Yamaki, Tetsuya*; Sato, Tatsuhiko

PLoS ONE (Internet), 13(8), p.e0202011_1 - e0202011_19, 2018/08

 Percentile:100(Multidisciplinary Sciences)

Scintillators are generally used to detect various kinds of particles such as electrons, gammas, protons and heavy ions. Scintillators emit photons according to the energy deposited to the crystal. It is also known that light yield is suppressed for particles depositing energy densely owing to quenching. Moreover, it is suggested that quenching is attributed to transfer of energy from excited fluorescent molecules to damaged molecules (F$"{o}$rster mechanism). In this study, energy deposition in a scintillator crystal by radiation was calculated using radiation transport codes to finally obtain excitation and damage of fluorescent molecules. Based on the calculation, spatial configuration of exited and damaged molecules. Then the probability that F$"{o}$rster mechanism takes place in excited molecules were estimated to obtain the number of fluorescent molecules that emit photons. As a result, light yield is proportionally increased with increase in the incident energy in case of electron incidence. On the other hand, light yield is increased non-linearly in case of proton incidence. This trend is in a good agreement with the experimental results.

Journal Articles

Cluster formation in relativistic nucleus-nucleus collisions

Ogawa, Tatsuhiko; Sato, Tatsuhiko; Hashimoto, Shintaro; Niita, Koji*

Physical Review C, 98(2), p.024611_1 - 024611_15, 2018/08

 Percentile:100(Physics, Nuclear)

Particle production by nucleus-nucleus reactions in the energy range from GeV to TeV is substantially important for safety evaluation in heavy ion accelerators and evaluation of space radiation dose. A lot of models and theories have been studied. In the models developed in the past, interaction between nucleons were dependent on the reference frame; therefore the moving incident nucleus and the target nucleus at rest transferred to the common frame were disintegrated. Previously, intentional bias was introduced to the calculation algorithms to supplement stability but residual nucleus mass and secondary particle production was underestimated. In this study, a reaction model JAMQMD was developed, in which intra-nucleon interaction was described in a frame-independent way. This model can reproduce the stability of nuclei regardless of the reference frame and the yield of residual nuclei as well as secondary particles including deuterons. JQMD Ver.2 developed 3 years ago can simulate nucleus-nucleus reactions up to 3 GeV/nucleon; therefore the development of JAMQMD is the doorway to simulate nucleus-nucleus reactions regardless of the incident energy. JAMQMD is an useful model for not only radiation protection studies but also analysis of fundamental physics studies.

Journal Articles

Comparison of cosmic-ray environments on earth, moon, mars and in spacecraft using PHITS

Sato, Tatsuhiko; Nagamatsu, Aiko*; Ueno, Haruka*; Kataoka, Ryuho*; Miyake, Shoko*; Takeda, Kazuo*; Niita, Koji*

Radiation Protection Dosimetry, 180(1-4), p.146 - 149, 2018/08

 Times Cited Count:1 Percentile:38.14(Environmental Sciences)

Cosmic-ray dose rates spatially and temporally change very much. In this study, we compared the calculated cosmic-ray environments on the Earth, Moon, and Mars as well as inside spacecraft on low-earth orbit (LEO) and at interplanetary space. In the calculation, a galactic cosmic-ray model developed in DLR and trapped proton/electron models AP9/AE9 were used for determining the incident cosmic-ray fluxes, and the Particle and Heavy Ion Transport code System, PHITS, was employed for the cosmic-ray transport simulation in the Earth, Lunar, and Martian systems as well as spacecraft. The virtual International Space Station (ISS) model developed by JAXA was adopted as the representative of spacecraft in the PHITS simulation. This paper focuses on the comprehensive discussions on the difference of cosmic-ray environments and the effective methods of their shielding in various exposure situations.

Journal Articles

Radiation dose nowcast for the ground level enhancement on 10-11 September 2017

Kataoka, Ryuho*; Sato, Tatsuhiko; Miyake, Shoko*; Shiota, Daiko*; Kubo, Yuki*

Space Weather, 16(7), p.917 - 923, 2018/07

 Times Cited Count:8 Percentile:2.3(Astronomy & Astrophysics)

A ground level enhancement (GLE) event occurred on 10-11 September 2017, associated with X8.2 solar flare exploded at western limb. The magnitude of the GLE was not so large even at the peak, but the duration of the event was longer than average. We briefly report the results of our manually conducted nowcast using WASAVIES (Warning System of AViation Exposure to Solar energetic particles). The maximum radiation dose rate at 12 km flight altitude was estimated to be approximately 2 $$mu$$Sv/h, which is only one-third of the corresponding background dose rate due to the galactic cosmic-ray exposure. This result verified the safety of aircrews and passengers in aviation during this event.

Journal Articles

Real time and automatic analysis program for WASAVIES; Warning system for aviation exposure to solar energetic particles

Sato, Tatsuhiko; Kataoka, Ryuho*; Shiota, Daiko*; Kubo, Yuki*; Ishii, Mamoru*; Yasuda, Hiroshi*; Miyake, Shoko*; Park, I.*; Miyoshi, Yoshizumi*

Space Weather, 16(7), p.924 - 936, 2018/07

 Times Cited Count:4 Percentile:11.05(Astronomy & Astrophysics)

A physics-based warning system of aviation exposure to solar energetic particles, WASAVIES, is improved to be capable of real-time and automatic analysis. In the improved system, the count rates of several neutron monitors (NM) at the ground level, as well as the proton fluxes measured by the GOES satellite are continuously downloaded at intervals of 5 min and used for determining the model parameters. The performance of WASAVIES is examined by analyzing the three major GLE events of the 21st century. A web-interface of WASAVIES is also developed and will be released in the near future through the public server of NICT.

Journal Articles

Features of particle and heavy ion transport code system (PHITS) version 3.02

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Tsai, P.-E.; Matsuda, Norihiro; Iwase, Hiroshi*; et al.

Journal of Nuclear Science and Technology, 55(6), p.684 - 690, 2018/06

 Times Cited Count:40 Percentile:0.03(Nuclear Science & Technology)

We have upgraded many features of the Particle and Heavy Ion Transport code System (PHITS) and released the new version as PHITS3.02. The accuracy and the applicable energy ranges of the code were greatly improved and extended, respectively, owing to the revisions to the nuclear reaction models and the incorporation of new atomic interaction models. In addition, several user-supportive functions were developed, such as new tallies to efficiently obtain statistically better results, radioisotope source-generation function, and software tools useful for applying PHITS to medical physics. In this paper, we summarize the basic features of PHITS3.02, especially those of the physics models and the functions implemented after the release of PHITS2.52 in 2013.

414 (Records 1-20 displayed on this page)