Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sato, Rina; Yoshimura, Kazuya; Sanada, Yukihisa; Mikami, Satoshi; Yamada, Tsutomu*; Nakasone, Takamasa*; Kanaizuka, Seiichi*; Sato, Tetsuro*; Mori, Tsubasa*; Takagi, Marie*
Environmental Science & Technology, 194, p.109148_1 - 109148_8, 2024/12
Times Cited Count:0 Percentile:0.00(Environmental Sciences)Assessment of individual external doses from ambient dose equivalents is used for predictive and retrospective assessments where personal dosimeters are not applicable. However, it tends to contain more errors than assessment by personal dosimetry due to various parameters. Therefore, in order to accurately assess the individual dose from ambient dose equivalents, a model that estimates effective doses considering life patterns and the shielding effects by buildings and vehicles, were developed in this study. The model parameters were examined using robust datasets of environmental radiation measured in the areas affected by the Fukushima Daiichi Nuclear Power Station accident in 2020 to 2021. The accuracy of the model was validated by comparison with 106 daily personal doses measured in Fukushima Prefecture in 2020. The measured personal dose was well reproduced by the model-estimated effective dose, showing that the model can be used to assess the individual exposure dose, similar to personal dosimetry. Furthermore, this model is an effective tool for radiation protection, as it can estimate the individual dose predictively and retrospectively by using environmental radiation data.
Sato, Rina; Yoshimura, Kazuya; Sanada, Yukihisa; Sato, Tetsuro*
Journal of Radiation Protection and Research, 47(2), p.77 - 85, 2022/06
After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. This study validates the model's accuracy by comparing the estimated effective doses with the measured personal dose equivalents. The personal dose equivalents and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. The estimated effective doses correlated significantly with the personal dose equivalents, demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose relative to personal dose equivalent indoors could be because the conversion factor from ambient dose equivalent to effective dose did not reflect the actual environment.
Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Yoshida, Tadayoshi; Sato, Tetsuro*; Seki, Akiyuki; Yamamoto, Hideaki*; et al.
Journal of Environmental Radioactivity, 210, p.105878_1 - 105878_12, 2019/12
Times Cited Count:40 Percentile:81.66(Environmental Sciences)Sato, Tetsuro*; Ando, Masaki; Sato, Masako*; Saito, Kimiaki
Journal of Environmental Radioactivity, 210, p.105973_1 - 105973_7, 2019/12
Times Cited Count:12 Percentile:41.02(Environmental Sciences)A method was devised for estimation of external doses of Fukushima residents expected to return to their homes after evacuation orders are lifted. 211 residents expected to return to six towns and villages were surveyed in FY 2014, FY 2015, and FY2016. Interviewing returning residents about their expected life patterns after returning, air dose rate were measured along the reported personal trails representing their patterns of movement in daily life. Excluding 15 residents from whose homes we were unable to take air dose rate measurements, the maximum external effective dose and the average external effective dose were estimated respectively as 4.9 mSv/y and 0.86 mSv/y. Although the mean values and dispersion of external effective doses differ depending on the evacuation level, for 93.3% of all residents, the estimated external effective doses were less than 2 mSv/y. The average exposure dose at home accounts for 66.8% of the annual exposure dose.
Saito, Kimiaki; Mikami, Satoshi; Ando, Masaki; Matsuda, Norihiro; Kinase, Sakae; Tsuda, Shuichi; Sato, Tetsuro*; Seki, Akiyuki; Sanada, Yukihisa; Wainwright-Murakami, Haruko*; et al.
Journal of Radiation Protection and Research, 44(4), p.128 - 148, 2019/12
Sato, Junya; Kikuchi, Hiroshi*; Kato, Jun; Sakakibara, Tetsuro; Matsushima, Ryotatsu; Sato, Fuminori; Kojima, Junji; Nakazawa, Osamu
QST-M-8; QST Takasaki Annual Report 2016, P. 62, 2018/03
no abstracts in English
Iwamoto, Yosuke; Sato, Tatsuhiko; Satoh, Daiki; Hagiwara, Masayuki*; Yashima, Hiroshi*; Masuda, Akihiko*; Matsumoto, Tetsuro*; Iwase, Hiroshi*; Shima, Tatsushi*; Nakamura, Takashi*
EPJ Web of Conferences, 153, p.08019_1 - 08019_3, 2017/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)To develop 100-400 MeV quasi-monoenergetic neutron field, we measured neutron and unexpected -ray energy spectra of the Li(p,n) reaction with 80-389 MeV protons in the 100-m time-of-flight (TOF) tunnel at the Research Center for Nuclear Physics (RCNP). Neutron energy spectra with energies above 3 MeV were measured by the TOF method and energy spectra with energies above 0.1 MeV were measured by the automatic unfolding function of the radiation dose monitor DARWIN. For neutron spectra, the contribution of peak intensity to the total intensity integrated with energies above 3 MeV varied between 0.38 and 0.48. For -ray spectra, high-energetic -rays at around 70 MeV originated from the decay of were observed over 200 MeV. For the 246-MeV proton incident reaction, the contribution of -ray dose to neutron dose is negligible because the ratio of -ray to neutron is 0.014.
Theis, C.*; Carbonez, P.*; Feldbaumer, E.*; Forkel-Wirth, D.*; Jaegerhofer, L.*; Pangallo, M.*; Perrin, D.*; Urscheler, C.*; Roesler, S.*; Vincke, H.*; et al.
EPJ Web of Conferences, 153, p.08018_1 - 08018_5, 2017/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)At CERN, gas-filled ionization chambers PTW-34031 (PMI) are commonly used in radiation fields including neutrons, protons and -rays. A response function for each particle is calculated by the radiation transport code FLUKA. To validate a response function to high energy neutrons, benchmark experiments with quasi mono-energetic neutrons have been carried out at RCNP, Osaka University. For neutron irradiation with energies below 200 MeV, very good agreement was found comparing the FLUKA simulations and the measurements. In addition it was found that at proton energies of 250 and 392 MeV, results calculated with neutron sources underestimate the experimental data due to a non-negligible gamma component originating from the target Li(p,n)Be reaction.
Masuda, Akihiko*; Matsumoto, Tetsuro*; Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Sato, Tatsuhiko; Iwase, Hiroshi*; Yashima, Hiroshi*; Nakane, Yoshihiro; Nishiyama, Jun*; et al.
Nuclear Instruments and Methods in Physics Research A, 849, p.94 - 101, 2017/03
Times Cited Count:1 Percentile:9.84(Instruments & Instrumentation)Quasi-monoenergetic high-energy neutron fields induced by Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Through this study, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.
Sato, Junya; Suzuki, Shinji*; Kato, Jun; Sakakibara, Tetsuro; Meguro, Yoshihiro; Nakazawa, Osamu
QST-M-2; QST Takasaki Annual Report 2015, P. 87, 2017/03
no abstracts in English
Sato, Junya; Suzuki, Shinji*; Kato, Jun; Sakakibara, Tetsuro; Meguro, Yoshihiro; Nakazawa, Osamu
QST-M-2; QST Takasaki Annual Report 2015, P. 88, 2017/03
no abstracts in English
Matsuda, Norihiro; Mikami, Satoshi; Sato, Tetsuro*; Saito, Kimiaki
Journal of Environmental Radioactivity, 166(Part 3), p.427 - 435, 2017/01
Times Cited Count:19 Percentile:48.97(Environmental Sciences)Saito, Kimiaki; Kurihara, Osamu*; Matsuda, Norihiro; Takahara, Shogo; Sato, Tetsuro*
Radioisotopes, 65(2), p.93 - 112, 2016/02
Late information is introduced on dose evaluation due to external exposures which employ an important role in the exposures due to the Fukushima accident. First, merits and demerits of the currently used two methods, that is the estimation based air dose rates and the measurements using personal dosimeters, are discussed indicating some basic data after a fundamental concept of external dose evaluation is provided. Next, main activities are summarized on external dose measurements and evaluations after the accident. Finally, a new trial on dose evaluation in introduced.
Iwamoto, Yosuke; Hagiwara, Masayuki*; Satoh, Daiki; Araki, Shohei*; Yashima, Hiroshi*; Sato, Tatsuhiko; Masuda, Akihiko*; Matsumoto, Tetsuro*; Nakao, Noriaki*; Shima, Tatsushi*; et al.
Nuclear Instruments and Methods in Physics Research A, 804, p.50 - 58, 2015/12
Times Cited Count:25 Percentile:88.18(Instruments & Instrumentation)We have measured neutron energy spectra for the 80, 100 and 296 MeV proton incident reactions at the RCNP cyclotron facility using time-of-flight method. The neutron energy spectrum consisted of the peak and continuum parts and the peak intensity was 0.9-1.1 10 neutrons/sr/C. The ratio of peak intensity of the spectrum to the total intensity was between 0.38 and 0.48. To consider the correction required to derive a response in the peak region from the measured total response for neutron monitors, we proposed the subtraction method using energy spectra between 0 and 25. The normalizing factor k against the 25 neutron fluence that equalizes the 0 neutron fluence in the continuum region was from 0.74 to 1.02. With our previous results, we have obtained data for characterization of monoenergetic neutron field for the Li(p,n) reaction with 80389 MeV protons at the RCNP cyclotron facility.
Hama, Katsuhiro; Mikake, Shinichiro; Ishibashi, Masayuki; Sasao, Eiji; Kuwabara, Kazumichi; Ueno, Tetsuro; Onuki, Kenji*; Beppu, Shinji; Onoe, Hironori; Takeuchi, Ryuji; et al.
JAEA-Review 2015-024, 122 Pages, 2015/11
Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technical basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase III, as the Phase II was concluded for a moment with the completion of the excavation of horizontal tunnels at GL-500m level in February 2014. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2014.
Ando, Masaki; Nakahara, Yukio; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Takahashi, Fumiaki; Mikami, Satoshi; Kinouchi, Nobuyuki; Sato, Tetsuro*; Tanigaki, Minoru*; et al.
Journal of Environmental Radioactivity, 139, p.266 - 280, 2015/01
Times Cited Count:55 Percentile:82.74(Environmental Sciences)A series of car-borne surveys using the KURAMA and KURAMA-II systems was conducted in a wide area in eastern Japan from June 2011 to December 2012 to evaluate the distribution of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant, and to determine the time-dependent trend of decrease in air dose rates. An automated data processing system was established, which enables analyses of large amounts of data obtained with the use of about 100 units of the measurement system in a short time. The initial data for studying the migration status of radioactive cesium was obtained in the first survey, followed by the other car-borne surveys having wider measurement ranges. Comparing the measured air dose rates obtained in each survey, it was found that the decreasing trend of air dose rates measured through car-borne surveys was larger than that expected from the physical decay of radioactive cesium and that measured using NaI (Tl) survey meters around the road.
Mikami, Satoshi; Maeyama, Takeshi*; Hoshide, Yoshifumi*; Sakamoto, Ryuichi*; Sato, Shoji*; Okuda, Naotoshi*; Sato, Tetsuro*; Takemiya, Hiroshi; Saito, Kimiaki
Journal of Environmental Radioactivity, 139, p.250 - 259, 2015/01
Times Cited Count:49 Percentile:79.76(Environmental Sciences)Mikami, Satoshi; Maeyama, Takeshi*; Hoshide, Yoshifumi*; Sakamoto, Ryuichi*; Sato, Shoji*; Okuda, Naotoshi*; Demongeot, S.*; Gurriaran, R.*; Uwamino, Yoshitomo*; Kato, Hiroaki*; et al.
Journal of Environmental Radioactivity, 139, p.320 - 343, 2015/01
Times Cited Count:99 Percentile:93.11(Environmental Sciences)Ueno, Tetsuro; Sato, Seiji; Takeuchi, Ryuji
JAEA-Data/Code 2014-018, 37 Pages, 2014/11
Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and started the Phase III in 2010 fiscal year. The groundwater inflow monitoring into shafts and research galleries has been continued to achieve the Phase II goals. This document presents the results of the groundwater inflow monitoring from fiscal year 2012 to 2013.
Oda, Chie; Walker, C.; Chino, Daisuke*; Ichige, Satoru; Honda, Akira; Sato, Tsutomu*; Yoneda, Tetsuro*
Applied Clay Science, 93-94, p.62 - 71, 2014/05
Times Cited Count:7 Percentile:23.60(Chemistry, Physical)Na-montmorillonite dissolution in a 0.3M NaOH solution has been investigated at pH12 and 70C. The flow-through dissolution experiments were conducted in a dispersed system with varying concentrations of Si and Al to derive a Na-montmorillonite dissolution rate, as a non-linear function of the Gibbs free energy of reaction, dGr. This rate equation was used to simulate the batch-type Na-montmorillonite reaction experiments conducted in a coagulated system. The model simulation of the batch-type experiment adopting the empirical rate equations of Na-montmorillonite dissolution and secondary mineral analcime precipitation were able to reproduce the measured changes in the amount of dissolved Na-montmorillonite and concentrations of Si and Al in solution. The results showed that the empirical rate equation of Na-montmorillonite dissolution determined in the dispersed system was applicable to the coagulated system over a higher dGr range and that the concentrations of Si and Al in the batch experiment were controlled by the precipitation of analcime.