Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kinase, Akari; Goto, Katsunori*; Aono, Ryuji; Konda, Miki; Sato, Yoshiyuki; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2024-004, 60 Pages, 2024/07
Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field as trench and pit. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2 and JRR-3 and stored at the waste storage facility L. In this report, we summarized the radioactivity concentrations of 20 radionuclides (H,
C,
Cl,
Co,
Ni,
Sr,
Nb,
Tc,
Ag,
I,
Cs,
Eu,
Eu,
U,
U,
Pu,
Pu,
Pu,
Am,
Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2022.
Ouchi, Kazuki; Haraga, Tomoko; Hirose, Kazuki*; Kurosawa, Yuika*; Sato, Yoshiyuki; Shibukawa, Masami*; Saito, Shingo*
Analytica Chimica Acta, 1298, p.342399_1 - 342399_7, 2024/04
Times Cited Count:1 Percentile:40.01(Chemistry, Analytical)Given that conventional methods of high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable. To address this need, we developed a Sr
quantitation technique that is based on liquid scintillation counting-coupled capillary transient isotachophoresis (ctITP) with two-point detection and relies on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed
Sr
in a single run. This method, which allows for the handling of high-dose radioactive specimens at the microliter level and is substantially faster than conventional ion-exchange protocols, was used to selectively quantify
Sr
in real high-dose waste. The successful concentration-separation in ctITP was ascribed to the inertness of the Sr-DOTA complex to dissociation.
Saito, Shingo*; Haraga, Tomoko; Marumo, Kazuki*; Sato, Yoshiyuki; Nakano, Yuta*; Tasaki-Handa, Yuiko*; Shibukawa, Masami*
Bulletin of the Chemical Society of Japan, 96(3), p.223 - 225, 2023/03
Times Cited Count:3 Percentile:34.10(Chemistry, Multidisciplinary)Highly efficient and effective separation between americium (Am) and curium ion (Cm
) was achieved by two simple electrophoresis-based techniques. Am
and Cm
ions were complexed with fluorophore-modified acyclic hexadentate and octadentate polyaminocarboxylates and then were electrophoretically separated and fluorescently detected in free solution with ternary complexation or in gel medium.
Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Seya, Natsumi; Nishimura, Shusaku; Hosomi, Kenji; Nagaoka, Mika; Yokoyama, Hiroya; Matsubara, Natsumi; et al.
JAEA-Review 2020-069, 163 Pages, 2021/02
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2019 to March 2020. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Nakano, Masanao; Fujii, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Nishimura, Shusaku; Matsubara, Natsumi; Maehara, Yushi; Narita, Ryosuke; et al.
JAEA-Review 2019-048, 165 Pages, 2020/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2018 to March 2019. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. (the trade name was changed to Tokyo Electric Power Company Holdings, Inc. on April 1, 2016) in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and exceeded the normal range of fluctuation in the monitoring, were evaluated.
Urakawa, Satoru*; Inoue, Toru*; Hattori, Takanori; Sano, Asami; Kohara, Shinji*; Wakabayashi, Daisuke*; Sato, Tomoko*; Funamori, Nobumasa*; Funakoshi, Kenichi*
Minerals (Internet), 10(1), p.84_1 - 84_13, 2020/01
Times Cited Count:10 Percentile:55.80(Geochemistry & Geophysics)The structure of hydrous amorphous SiO is fundamental to investigate the effects of water on the physicochemical properties of oxide glasses and magma. The hydrous SiO
glass with 13 wt.% D
O was synthesized under high-pressure and high-temperature conditions and its structure was investigated by small angle X-ray scattering, X-ray diffraction, and neutron diffraction experiments at pressures of up to 10 GPa and room temperature. This hydrous glass is separated into a SiO
rich major phase and a D
O rich minor phase. Medium-range order of the hydrous glass shrinks compared to the anhydrous SiO
glass due to disruption of SiO
linkage by formation of Si-OD deuterioxyl, while the pressure response is similar. Most of D
O molecules are in the small domains and hardly penetrate into SiO
major phase.
Sato, Yoshiyuki; Aono, Ryuji; Haraga, Tomoko; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Testing 2019-003, 20 Pages, 2019/12
In the Radioactive Waste Management Technology Section, the radioactive liquid waste generated in the test using natural uranium in the past has been stored based on the contents of permission. Although we decided to perform solidification treatment in order to reduce the risk in storage, no rational treatment method has been established so far. Therefore, we examined adsorption treatment of natural uranium using uranium adsorbent (Tannix), and finally stabilized treatment by cement solidification. The treatment methods and findings obtained for a series of operations in waste liquid treatment are summarized in this report for reference when treating similar liquid waste.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Kono, Takahiko; Hosomi, Kenji; Hokama, Tomonori; Nishimura, Tomohiro; Matsubara, Natsumi; et al.
JAEA-Review 2018-025, 171 Pages, 2019/02
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Haraga, Tomoko; Ouchi, Kazuki; Sato, Yoshiyuki; Hoshino, Hitoshi*; Tanana, Rei*; Fujihara, Takashi*; Kurokawa, Hideki*; Shibukawa, Masami*; Ishimori, Kenichiro; Kameo, Yutaka; et al.
Analytica Chimica Acta, 1032, p.188 - 196, 2018/11
Times Cited Count:14 Percentile:46.22(Chemistry, Analytical)The development of safe, rapid and highly sensitive analytical methods for radioactive samples, especially actinide (An) ions, represents an important challenge. Here we propose a methodology for selecting appropriate emissive probes for An ions with very low consumption and emission of radioactivity by capillary electrophoresis-laser-induced fluorescence detection (CE-LIF), using a small chemical library of probes with eight different chelating moieties. It was found that the emissive probe, which possesses the tetradentate chelating moiety, was suitable for detecting uranyl ions. The detection limit for the uranyl-probe complex using CE-LIF combined with dynamic ternary complexation and on-capillary concentration techniques was determined to be 0.7 ppt. This method was successfully applied to real radioactive liquid samples collected from nuclear facilities.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Nemoto, Masashi; Tobita, Keiji; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Nishimura, Tomohiro; Koike, Yuko; et al.
JAEA-Review 2017-028, 177 Pages, 2018/01
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2016 to March 2017. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Nakano, Masanao; Fujita, Hiroki; Mizutani, Tomoko; Hosomi, Kenji; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; Matsubara, Natsumi; Maehara, Yushi; et al.
JAEA-Review 2016-035, 179 Pages, 2017/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2015 to March 2016. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Electric Power Company Holdings, Inc. in March 2011. Appendices present comprehensive information, such as monitoring programs, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data which were influenced by the accidental release and were exceeded the normal range of fluctuation in the monitoring, were evaluated.
Haraga, Tomoko; Sato, Yoshiyuki; Kameo, Yutaka; Saito, Shingo*
Dekomisshoningu Giho, (55), p.22 - 27, 2017/03
no abstracts in English
Fukaya, Masaaki*; Takeda, Nobufumi*; Miura, Norihiko*; Ishida, Tomoko*; Hata, Koji*; Uyama, Masao*; Sato, Shin*; Okuma, Fumiko*; Hayagane, Sayaka*; Matsui, Hiroya; et al.
JAEA-Technology 2016-035, 153 Pages, 2017/02
The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project in FY2016, detailed investigations of the (mechanical) behaviors of the plug and the rock mass around the reflood tunnel through ongoing reflood test were performed as part of (5) development of technologies for restoration and/or reduction of the excavation damage. As the result, particularly for the temperature change of the plug, its analytical results agree fairly well agree with the measurement ones. This means cracks induced by temperature stress can be prevented by the cooling countermeasure works reviewed in designing stage. In addition, for the behaviors of the plug and the bedrock boundary after reflooding the reflood tunnel, comparison between the results obtained by coupled hydro-mechanical analysis (stress-fluid coupled analysis) with the ones by several measurements, concluded that the model established based on the analysis results is generally appropriated.
Fukaya, Masaaki*; Hata, Koji*; Akiyoshi, Kenji*; Sato, Shin*; Takeda, Nobufumi*; Miura, Norihiko*; Uyama, Masao*; Kaneda, Tsutomu*; Ueda, Tadashi*; Hara, Akira*; et al.
JAEA-Technology 2016-002, 195 Pages, 2016/03
The researches on examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/on reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As the result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained.
Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju*; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; Nishimura, Tomohiro; et al.
JAEA-Review 2015-034, 175 Pages, 2016/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2014 to March 2015. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co. in March 2011.
Sato, Toshinori; Mikake, Shinichiro; Miura, Norihiko*; Ishida, Tomoko*
Tonneru To Chika, 46(12), p.901 - 911, 2015/12
The Japan Atomic Energy Agency conducts studies and research associated with the excavation of underground research facility at the Mizunami Underground Research Laboratory in Mizunami City, Gifu Prefecture. The research laboratory is an underground facility consisting of two shafts and some drifts and excavation has currently extended to a depth of 500 m. One of in-situ experiments, groundwater recovery experiment to understand groundwater pressure and geochemical properties change due to groundwater flooded has been performed in the GL.-500m drift. This report contains the results of design work of concrete plug for groundwater recovery experiment. Structural analysis and thermal stress analysis were performed to check resistant ability to over 5 MPa. Measurement plan was also discussed in this report.
Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju; Morisawa, Masato; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; et al.
JAEA-Review 2014-042, 175 Pages, 2015/01
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2013 to March 2014. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.
Kitamura, Akihiro; Kurikami, Hiroshi; Yamaguchi, Masaaki; Oda, Yoshihiro; Saito, Tatsuo; Kato, Tomoko; Niizato, Tadafumi; Iijima, Kazuki; Sato, Haruo; Yui, Mikazu; et al.
Nuclear Science and Engineering, 179(1), p.104 - 118, 2015/01
Times Cited Count:8 Percentile:52.35(Nuclear Science & Technology)The prediction of the distribution and fate of radioactive materials eventually deposited at surface in the Fukushima area is one of the main objectives and expected to be achieved in an efficient manner. In order to make such prediction, a number of mathematical models of radioactive contaminants, with particular attention on cesium, on the land and in rivers, lakes, and estuaries in the Fukushima area are developed. Simulation results are examined with the field investigations simultaneously implemented. The basic studies of the adsorption/absorption mechanism of cesium and soils have been performed to shed light on estimating distribution coefficient between dissolved contaminant and particulate contaminant.
Haraga, Tomoko; Saito, Shingo*; Sato, Yoshiyuki; Asai, Shiho; Hanzawa, Yukiko; Hoshino, Hitoshi*; Shibukawa, Masami*; Ishimori, Kenichiro; Takahashi, Kuniaki
Analytical Sciences, 30(7), p.773 - 776, 2014/07
Times Cited Count:7 Percentile:23.30(Chemistry, Analytical)A simple and rapid method with low radiation exposure risk was developed for the determination of neodymium in spent nuclear fuel by CE with LIF detection using a fluorescent ligand having a macrocyclic hexadentate polyaminocarboxylate structure. The concentration of Nd(III) in a spent nuclear fuel sample was determined with no interference from various matrix elements, including lanthanides and uranium (at a 200-fold excess), with 92 3% recovery. This is due to method's high resolution based on establishing a ternary complex equilibrium during migration in which the hydroxyl ion plays an auxiliary role.
Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Nakada, Akira; Fujita, Hiroki; Takeyasu, Masanori; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; et al.
JAEA-Review 2013-056, 181 Pages, 2014/03
Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2012 to March 2013. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.